Skip to main content

Material interpolation schemes for unified topology and multi-material optimization

Abstract

This paper presents two multi-material interpolation schemes as direct generalizations of the well-known SIMP and RAMP material interpolation schemes originally developed for isotropic mixtures of two isotropic material phases. The new interpolation schemes provide generally applicable interpolation schemes between an arbitrary number of pre-defined materials with given (anisotropic) properties. The method relies on a large number of sparse linear constraints to enforce the selection of at most one material in each design subdomain. Topology and multi-material optimization is formulated within a unified parametrization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Ahmad S, Irons B, Zienkiewicz O (1970) Analysis of thick and thin shell structures by curved elements. Int J Numer Methods Eng 2:419–451

    Article  Google Scholar 

  • Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202

    Google Scholar 

  • Bendsøe M, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer

  • Bendsøe M, Díaz A, Lipton R, Taylor J (1995) Optimal design of material properties and material distribution for multiple loading conditions. Int J Numer Methods Eng 38(7):1149–1170

    Article  Google Scholar 

  • Bendsøe M, Lund E, Olhoff N, Sigmund O (2005) Topology optimization - broadening the areas of application. Control Cybern 34(1):7–35

    MATH  Google Scholar 

  • Bodnár G (2009) Visualization and interpretation tools for free material optimization results. In: 8th world congress on structural and multidisciplinary optimization, Lisbon, Portugal

  • Bruyneel M (2011) SFP—a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidisc Optim 43:17–27. doi:10.1007/s00158-010-0548-0

    Article  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  • Gibiansky L, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498

    Article  MathSciNet  MATH  Google Scholar 

  • Gill P, Murray W, Saunders M (2005) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131

    Article  MathSciNet  MATH  Google Scholar 

  • Gill P, Murray W, Saunders M (2008) User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming, Report NA 05-2, Department of Mathematics, University of California, San Diego

  • Hörnlein H, Kočvara M, Werner R (2001) Material optimization: bridging the gap between conceptual and preliminary design. Aerosp Sci Technol 5(8):541–554

    Article  MATH  Google Scholar 

  • Hvejsel C, Lund E, Stolpe M (2011) Optimization strategies for discrete multi-material stiffness optimization. Struct Multidisc Optim (submitted)

  • Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124

    Article  Google Scholar 

  • Muñoz E (2010) Global optimization for structural design by generalized benders’ decomposition. PhD thesis, Technical University of Denmark, Department of Mathematics, Kgs. Lyngby, Denmark

  • Muñoz E, Stolpe M (2010) Generalized benders’ decomposition for topology optimization problems. J Glob Optim. doi:10.1007/s10898-010-9627-4

  • Panda S, Natarajan R (1981) Analysis of laminated composite shell structures by finite element method. Comput Struct 14(3–4):225–230

    Article  MATH  Google Scholar 

  • Setoodeh S, Abdalla M, Gürdal Z (2005) Combined topology and fiber path design of composite layers using cellular automata. Struct Multidisc Optim 30(6):413–421

    Article  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Stegmann J (2004) Analysis and optimization of laminated composite shell structures. PhD thesis, Department of Mechanical Engineering, Aalborg University

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027

    Article  MATH  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124

    Article  Google Scholar 

  • Stolpe M, Svanberg K (2003) Modelling topology optimization problems as linear mixed 0–1 programs. Int J Numer Methods Eng 57(5):723–739

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555

    Article  MathSciNet  MATH  Google Scholar 

  • Wächter A, Biegler L (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57

    Article  MathSciNet  MATH  Google Scholar 

  • Wang M, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput-Aided Des 37(3):321–337

    Article  Google Scholar 

  • Wang M, Chen S, Wang X, Mei Y (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127:941

    Article  Google Scholar 

  • Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6–8):469–496

    Article  MATH  Google Scholar 

  • Yin L, Ananthasuresh G (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidisc Optim 23(1):49–62

    Article  Google Scholar 

Download references

Acknowledgement

This research is part of the project “Multimaterial design optimization of composite structures” sponsored by the Danish Research Council for Technology and Production Sciences (FTP), Grant no. 274-06-0443. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Frier Hvejsel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hvejsel, C.F., Lund, E. Material interpolation schemes for unified topology and multi-material optimization. Struct Multidisc Optim 43, 811–825 (2011). https://doi.org/10.1007/s00158-011-0625-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0625-z

Keywords

  • Material interpolation
  • Topology optimization
  • Multi-material parametrization
  • Composite materials