Skip to main content
Log in

Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases

  • Industrial Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Harmony search-based algorithm is developed to determine the minimum cost design of steel frames with semi-rigid connections and column bases under displacement, strength and size constraints. Harmony search (HS) is recently developed metaheuristic search algorithm which is based on the analogy between the performance process of natural music and searching for solutions of optimum design problems. The geometric non-linearity of the frame members, the semi-rigid behaviour of the beam-to-column connections and column bases are taken into account in the design algorithm. The results obtained by semi-rigid connection and column base modelling are also compared to one developed by rigid connection modelling. The efficiency of HS algorithm, in comparison with genetic algorithms (GAs), is verified with three benchmark examples. The results indicate that HS could obtain lighter frames and less cost values than those developed using GAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdalla KM, Chen WF (1995) Expanded database of semi-rigid steel connections. Comput Struct 56:553–564

    Article  Google Scholar 

  • AISC (2001) Manual of steel construction-Load and resistance factor design. American Institute of Steel Construction, Chicago

    Google Scholar 

  • Almusallam TH (1995) Effect of connection flexibility on the optimum design of steel frames. In: Proceedings intern conf develop comput tech civil eng. Edinburgh

  • Alsalloum YA, Almusallam TH (1995) Optimality and safety of rigidly-jointed and flexibly-jointed steel frames. J Constr Steel Res 35:189–215

    Article  Google Scholar 

  • Chen WF, Goto Y, Liew JYR (1996) Stability design of semi-rigid frames. Wiley, New York

    Google Scholar 

  • Cheng YM, Li L, Lansivaara T, Chi SC, Sun YJ (2008) An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis. Eng Optim 40:95–115

    Article  Google Scholar 

  • Csebfalvi A (2007) Optimal design of frame structures with semi-rigid joints. Period Polytech Civ Eng 51:9–15

    Article  Google Scholar 

  • Cunningham RJ (1990) Some aspects of semi-rigid connections in structural steelwork. Struct Eng 68:85–92

    Google Scholar 

  • Degertekin SO (2008a) Harmony search algorithm for optimum design of steel frame structures: a comparative study with other optimization methods. Struct Eng Mech 29:391–410

    Google Scholar 

  • Degertekin SO (2008b) Optimum design of steel frames using harmony search algorithm. Struct Multidisc Optim 36:393–401

    Article  Google Scholar 

  • Dhillon BS, O’Malley JW (1999) Interactive design of semirigid steel frames. J Struct Eng-ASCE 125:556–564

    Article  Google Scholar 

  • Fesanghary M, Damangir E, Soleimani I (2009) Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Appl Therm Eng 29:1026–1031

    Article  Google Scholar 

  • Forsati R, Haghighat AT, Mahdavi M (2008) Harmony search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Comput Commun 31:2505–2519

    Article  Google Scholar 

  • Frye MJ, Morris GA (1975) Analysis of flexibly connected steel frames. Can J Civ Eng 2:280–291

    Article  Google Scholar 

  • Geem ZW (2006) Optimal cost design of water distribution networks using harmony search. Eng Optim 38:259–280

    Article  Google Scholar 

  • Geem ZW (2007) Optimal scheduling of multiple dam system using harmony search algorithm. Lect Notes Comput Sci 4507:316–323

    Article  Google Scholar 

  • Geem ZW, Williams JC (2007) Harmony search and ecological optimization. Int J Energy Environ Econ 1:150–154

    Google Scholar 

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–68

    Article  Google Scholar 

  • Geem ZW, Lee KS, Park Y (2005) Application of harmony search to vehicle routing. Am J Appl Sci 2:1552–1557

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addisson-Wesley, Reading

    MATH  Google Scholar 

  • Hayalioglu MS, Degertekin SO (2004a) Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections. Steel Compos Struct 4:453–469

    Google Scholar 

  • Hayalioglu MS, Degertekin SO (2004b) Design of non-linear steel frames for stress and displacement constraints with semi-rigid connections via genetic optimization. Struct Multidisc Optim 27:259–271

    Article  Google Scholar 

  • Hayalioglu MS, Degertekin SO (2005) Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization. Comput Struct 83:1849–1863

    Article  Google Scholar 

  • Hensmann JS, Nethercot DA (2001) Numerical study of unbraced composite frames: generation of data to validate use of the wind moment method of design. J Constr Steel Res 57:791–809

    Article  Google Scholar 

  • Ihaddoudene ANT, Saidani M, Chemrouk M (2009) Mechanical model for the analysis of steel frames with semi rigid joints. J Constr Steel Res 65:631–640

    Article  Google Scholar 

  • Ivanyi M (2000) Full-scale tests of steel frames with semi-rigid connections. Eng Struct 22:168–179

    Article  Google Scholar 

  • Jones SW, Kirby PA, Nethercot DA (1980) Effect of semi-rigid connections on steel column strength. J Constr Steel Res 1:38–46

    Article  Google Scholar 

  • Kameshki ES, Saka MP (2001) Optimum design of nonlinear steel frames with semi rigid connections using a genetic algorithms. Comput Struct 79:1593–1604

    Article  Google Scholar 

  • Kameshki ES, Saka MP (2003) Genetic algorithm based optimum design of nonlinear planar steel frames with various semirigid connections. J Constr Steel Res 59:109–134

    Article  Google Scholar 

  • Kaveh A, Moez H (2006) Analysis of frames with semi-rigid joints: a graph-theoretical approach. Eng Struct 28:829–836

    Article  Google Scholar 

  • Kim JH, Geem ZW, Kim ES (2001) Parameter estimation of the nonlinear muskingum model using harmony search. J Am Water Resour Assoc 37:1131–1138

    Article  Google Scholar 

  • King WS (1994) The limit loads of steel semi-rigid frames analyzed with different methods. Comput Struct 51:475–487

    Article  MATH  Google Scholar 

  • King WS, Chen WF (1994) Practical 2nd-order inelastic analysis of semirigid frames. J Struct Eng-ASCE 120:2156–2175

    Article  Google Scholar 

  • Kishi N, Chen WF (1990) Moment-rotation relations of semi-rigid connections with angles. J Struct Eng-ASCE 116:1813–1834

    Article  Google Scholar 

  • Kishi N, Chen WF, Goto Y (1997) Effective length factor of columns in semirigid and unbraced frames. J Struct Eng-ASCE 123:313–320

    Article  Google Scholar 

  • Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798

    Article  Google Scholar 

  • Lee SS, Moon TS (2002) Moment-rotation model of semi-rigid connections with angles. Eng Struct 24:227–237

    Article  Google Scholar 

  • Lee KS, Geem ZW, Lee SH, Bae KW (2005) The harmony search heuristic algorithm for discrete structural optimization. Eng Optim 37:663–684

    Article  MathSciNet  Google Scholar 

  • Lui EM, Chen WF (1986) Analysis and behaviour of flexibly-jointed frames. Eng Struct 8:107–118

    Article  Google Scholar 

  • Monforton GR, Wu TS (1963) Matrix analysis of semi-rigidly connected steel frames. J Struct Div-ASCE 89:13–42

    Google Scholar 

  • Mun S, Geem ZW (2009) Determination of viscoelastic and damage properties of hot mix asphalt concrete using a harmony search algorithm. Mech Mater 41:339–353

    Article  Google Scholar 

  • Paik K, Kim JH, Kim HS, Lee DR (2005) A conceptual rainfall-runoff model considering seasonal variation. Hydrol Process 19:3837–3850

    Article  Google Scholar 

  • Pirmoz A, Khoei AS, Mohammadrezapour E, Daryan AS (2009) Moment-rotation behavior of bolted top-seat angle connections. J Constr Steel Res 65:973–984

    Article  Google Scholar 

  • Saka MP (2007) Optimum geometry design of geodesic domes using harmony search algorithm. Adv Struct Eng 10:595–606

    Article  Google Scholar 

  • Saka MP (2009) Optimum design of steel sway frames to BS 5950 using harmony search algorithm. J Constr Steel Res 65:36–43

    Article  Google Scholar 

  • Sekulovic M, Salatic R (2001) Nonlinear analysis of frames with flexible connections. Comput Struct 79:1097–1107

    Article  Google Scholar 

  • Simoes LMC (1996) Optimization of frames with semi-rigid connections. Comput Struct 60:531–539

    Article  MATH  Google Scholar 

  • Wang XW (2008) Nonlinear finite element analysis on the steel frame with semi-rigid connections. In: 7th WSEAS int conf appl comput appl comput sci. Hangzhou

  • Wu FS, Chen WF (1990) A design model for semi-rigid connections. Eng Struct 12:88–97

    Article  Google Scholar 

  • Xu L, Grierson DE (1993) Computer automated design of semi-rigid steel frameworks. J Struct Eng-ASCE 119:1740–1760

    Article  Google Scholar 

  • Yee YL, Melchers RE (1986) Moment-rotation curves for bolted connections. J Struct Eng-ASCE 112:615–635

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadik O. Degertekin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degertekin, S.O., Hayalioglu, M.S. Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases. Struct Multidisc Optim 42, 755–768 (2010). https://doi.org/10.1007/s00158-010-0533-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0533-7

Keywords

Navigation