Skip to main content
Log in

Topology optimization of periodic layouts of dielectric materials

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A topology optimization method is used to design two dimensional periodic structures with desirable transmission properties by distributing two materials of different permittivity over a rectangular representative cell. A plane wave expansion of the electric field at the input and output boundaries is used in the analysis. This allows non-homogeneous material distributions near the boundaries. Numerical examples are used to verify the robustness of the method and to investigate the importance of retaining higher modes in the expansions. It is found that the optimization problem typically admits possibly many local optima and the relevance of higher modes depends on the nature of the solution found. In some instances, higher modes play an important role and using only the dominant mode in the analysis is shown to result in errors in the evaluation of the performance of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bao G (1995) Finite-element approximation of time-harmonic waves in periodic structures. SIAM J Numer Anal 32(4):1155–1169

    Article  MATH  MathSciNet  Google Scholar 

  • Bendsøe MP (1990) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Borel PI, Harpoth A, Frandsen LH, Kristensen M, Shi P, Jensen JS, Sigmund O (2004) Topology optimization and fabrication of photonic crystal structures. Opt Express 12(9):1996–2001

    Article  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Diaz AR, Benard A (2003) Designing materials with prescribed elastic properties using polygonal cells. Int J Numer Methods Eng 57(3):301–314

    Article  MATH  MathSciNet  Google Scholar 

  • Dossou K, Byrne MA, Botten LC (2006) Finite element computation of grating scattering matrices and application to photonic crystal band calculations. J Comput Phys 219(1):120–143

    Article  MATH  MathSciNet  Google Scholar 

  • Duhring MB, Sigmund O, Feurer T (2010) Design of photonic bandgap fibers by topology optimization. J Opt Soc Am, B 27(1):51–58

    Article  Google Scholar 

  • Fuchi K, Diaz AR, Yamada T, Nishiwaki S (2009) A level set-based topology optimization method for power flow control in electromagnetics. In: 8th congress on structural and multidisciplinary optimization. Lisbon, Portugal

  • Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84(12):2022–2024

    Article  Google Scholar 

  • Mlejnik HP, Schirrmacher R (1993) An engineer’s approach to optimal material distribution and shape finding. Comput Methods Appl Mech Eng 106(1–2):1–26

    Article  Google Scholar 

  • Nomura T, Nishiwaki S, Sato K, Hirayama K (2009) Topology optimization for the design of periodic microstructures composed of electromagnetic materials. Finite Elem Anal Des 45(3):210–226

    Article  MathSciNet  Google Scholar 

  • Riishede J, Sigmund O (2008) Inverse design of dispersion compensating optical fiber using topology optimization. J Opt Soc Am, B 25(1):88–97

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252

    Article  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2339

    Article  MATH  MathSciNet  Google Scholar 

  • Sigmund O, Hougaard K (2008) Geometric properties of optimal photonic crystals. Phys Rev Lett 100(15):153904

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Tsuji Y, Hirayama K, Nomura T, Sato K, Nishiwaki S (2006) Design of optical circuit devices based on topology optimization. IEEE Photonic Technol Lett 18(5–8):850–852

    Article  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported, in part, by the US National Science Foundation under Grant No. 0800388. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro R. Diaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchi, K., Diaz, A.R., Rothwell, E. et al. Topology optimization of periodic layouts of dielectric materials. Struct Multidisc Optim 42, 483–493 (2010). https://doi.org/10.1007/s00158-010-0522-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0522-x

Keywords

Navigation