Skip to main content
Log in

Layout and material gradation in topology optimization of functionally graded structures: a global–local approach

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

By means of continuous topology optimization, this paper discusses the influence of material gradation and layout in the overall stiffness behavior of functionally graded structures. The formulation is associated to symmetry and pattern repetition constraints, including material gradation effects at both global and local levels. For instance, constraints associated with pattern repetition are applied by considering material gradation either on the global structure or locally over the specific pattern. By means of pattern repetition, we recover previous results in the literature which were obtained using homogenization and optimization of cellular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Almeida SRM, Paulino GH, Silva ECN (2009) A simple and effective inverse projection scheme for void distribution control in topology optimization. Struct Multidisc Optim 39(4):359–371

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin, p 370

    Google Scholar 

  • Bendsøe MP, Soares M (1992) Topology design of structures. Academic Press, London

    Google Scholar 

  • Bojczuk D, Szteleblak W (2008) Optimization of layout and shape of stiffeners in 2D structures. Comput Struct 86:1436–1446

    Article  Google Scholar 

  • Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37):4911–4928

    Article  MATH  MathSciNet  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Carbonari RC, Silva ECN, Paulino GH (2007) Topology optimization design of functionally graded bimorph-type piezoeletric actuators. Smart Mater Struct 16(6):2605–2620

    Article  Google Scholar 

  • Carbonari RC, Silva ECN, Paulino GH (2009) Multi-actuated functionally graded piezoelectric micro-tools design: a multiphysics topology optimization approach. Int J Numer Methods Eng 77(3):301–336

    Article  MATH  Google Scholar 

  • Giannakopoulos AE, Suresh S, Finot M, Olsson M (1995) Elastoplastic analysis of thermal cycling: layered materials with compositional gradients. Acta Metall Mater 43(4):1335–1354

    Article  Google Scholar 

  • Guest JK (2009) Imposing maximum length scale in topology optimization. Struct Multidisc Optim 37(5):463–473

    Article  MathSciNet  Google Scholar 

  • Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MATH  Google Scholar 

  • Guo X, Gu YX (2004) A new density-stiffness interpolation scheme for topology optimization of continuum structures. Eng Comput 21(1):9–22

    Article  MATH  Google Scholar 

  • Kang Z, Tong L (2008) Integrated optimization of material layout and control voltage for piezoelectric laminated plates. J Intell Mater Syst Struct 19:889–904

    Article  Google Scholar 

  • Kim J-H, Paulino GH (2002) Isoparametric graded finite element for non-homogeneous isotropic and orthotropic. ASME J Appl Mech 69(4):502–514

    Article  MATH  Google Scholar 

  • Kumar AV, Gossard DC (1996) Synthesis of optimal shape and topology of structures. J Mech Des, ASME 118(1):68–74

    Article  Google Scholar 

  • Markworth AJ, Ramesh KS, Parks Jr WP (1995) Modelling studies applied to functionally graded materials. J Mater Sci 30(9):2183–2193

    Article  Google Scholar 

  • Matsui K, Terada K (2004) Continuous approximation for material distribution for topology optimization. Int J Numer Methods Eng 59(14):1925–1944

    Article  MATH  MathSciNet  Google Scholar 

  • Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (1999) Functionally graded materials: design, processing and applications. Kluwer-Academic, Dordrecht

    Google Scholar 

  • Ozturk M, Erdogan F (1999) The mixed mode crack problem in an inhomogeneous orthotropic medium. Int J Fract 98(3–4):243–261

    Article  Google Scholar 

  • Paulino GH, Pindera M-J, Dodds RH Jr, Rochinha FA, Dave EV, Chen L (eds) (2008) Multiscale and functionally graded materials, FGM IX, Oahu Island, Hawaii, October 15–18, 2006. American Institute of Physics (AIP) Conference Proceedings, vol 973. ISBN: 978-0-7354-0492–2

  • Paulino GH, Silva ECN (2005) Design of functionally graded structures using topology optimization. In: Materials science forum, vols 492–493. Trans Tech Publications, Switzerland, pp 435–440

    Google Scholar 

  • Pindera M-J, Dunn P (1997) Evaluation of the higher-order theory for functionally graded materials via the finite-element method. Composites Part B 28(1–2):109–119

    Article  Google Scholar 

  • Rozvany GIN (ed) (1991) Optimization of large structural systems, vols I–II, NATO ASI series. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Santare MH, Lambros J (2000) Use of graded finite elements to model the behavior of non-homogeneous materials. ASME J Appl Mech 67(4):819–822

    Article  MATH  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2001) Design of multiphysics actuators using topology optimization—part II: two-material structures. Comput Methods Appl Mech Eng 190(49–50):6605–6627

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424

    Article  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboard, mesh-dependence and local minima. Struct Multidisc Optim 16(1):68–75

    Google Scholar 

  • Strang G, Kohn RV (1986) Optimal design in elasticity and plasticity. Int J Numer Methods Eng 22:183–188

    Article  MATH  MathSciNet  Google Scholar 

  • Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials. IOM Communications, London

    Google Scholar 

  • Sutradhar S, Paulino GH, Gray LJ (2002) Transient heat conduction in homogeneous and non-homogeneous materials by the Laplace transform Galerkin boundary element method. Eng Anal Bound Elem 26(2):119–132

    Article  MATH  Google Scholar 

  • Wang MY, Wang S (2005) Bilateral filtering for structural topology optimization. Int J Numer Methods Eng 63(13):1911–1938

    Article  MATH  Google Scholar 

  • Zhang W, Sun S (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68(9):993–1011

    Article  MATH  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):197–224

    Article  Google Scholar 

  • Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidisc Optim 21(2):152–158

    Article  Google Scholar 

  • Zhu J, Zhang W, Beckers P, Chen Y, Guo Z (2008) Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Struct Multidisc Optim 36:29–41

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

SRMA acknowledges the Brazilian agency CAPES for the support provided during her Sabbatical at the University of Illinois at Urbana-Champaign (UIUC) through project number 3516/06-7. GHP acknowledges FAPESP for awarding him a Visiting Scientist position at the University of São Paulo (USP) through project number 2008/51070-0. ECNS thanks the Brazilian agencies FAPESP (project number 06/57805-7) and CNPq (project number 303689/2009-9), and the UIUC for inviting him as a Visiting Professor during the Summer/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaucio H. Paulino.

Nomenclature

Nomenclature

a :

length of the pattern in X direction

b :

length of the pattern in Y direction

B :

strain-displacement matrix

c :

objective function representing the compliance of the structure

C 0 :

constitutive matrix of the solid phase of the reference material

d :

nodal density

d :

set of nodal densities

d 1 :

primary nodal densities

d 2 :

secondary densities

e :

index identifying the element

E H :

Young’s modulus of the homogeneous material

\(E_i^e \) :

Young’s modulus of element e at node i

E s :

Young’s modulus of the solid material

E 0 :

reference Young’s modulus

E 1 :

Young’s modulus at the end of the gradation curve

f :

global nodal force vector

H :

height of the structure

K :

global stiffness matrix

K e :

element stiffness matrix

L :

length of the structure

m :

number of patterns in X direction

n :

number of patterns in Y direction

nnodes :

total number of nodes

\(N_i^e\) :

shape function of element e related to node i

p :

penalization factor of the SIMP and the FGM-SIMP models

P :

point load

q :

uniform load

\(r_j^n\) :

distance between the nodes n and j

r min :

radius of the projection region

S i :

set of elements sharing node i

\(S_d^k \) :

set of nodal densities d assigned to the design variable y k

\(S_w^n\) :

set of nodes included in the projection region of node n

u :

global displacement vector

u e :

element displacement vector

V s :

maximum volume of structural material

w :

weight-function

x :

coordinates of a point

X and Y:

Cartesian coordinates of position x

X m and Y m :

coordinates of symmetry axes

X ∗  and Y ∗ :

coordinates of position x in the local pattern system

y :

design variable

y :

set of design variables

α :

coefficient that defines the change of material property in the direction of axis X

β :

coefficient that defines the change of material property in the direction of axis Y

ρ :

material density

\(\rho _i^e \) :

nodal density and projected density at node i of element e

ρ n :

projected nodal density for node n

ΔV i :

volume around node i

Ω:

extended domain

Ω e :

domain of element e

\(\Omega _w^n \) :

projection region of node n

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, S.R.M., Paulino, G.H. & Silva, E.C.N. Layout and material gradation in topology optimization of functionally graded structures: a global–local approach. Struct Multidisc Optim 42, 855–868 (2010). https://doi.org/10.1007/s00158-010-0514-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0514-x

Keywords

Navigation