Skip to main content
Log in

Topological optimization of structures subject to Von Mises stress constraints

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation. Therefore, this sensitivity can be naturally used as a descent direction in a structural topology design problem. However, according to the literature concerning the topological derivative, only the classical approach based on flexibility minimization for a given amount of material, without control on the stress level supported by the structural device, has been considered. In this paper, therefore, we introduce a class of penalty functionals that mimic a pointwise constraint on the Von Mises stress field. The associated topological derivative is obtained for plane stress linear elasticity. Only the formal asymptotic expansion procedure is presented, but full justifications can be deduced from existing works. Then, a topology optimization algorithm based on these concepts is proposed, that allows for treating local stress criteria. Finally, this feature is shown through some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G (2002) Shape optimization by the homogenization method. In: Applied mathematical sciences, vol 146. Springer, New York

    Google Scholar 

  • Allaire G (2007) Conception optimale de structures. In: Mathématiques et applications, vol 58. Springer, Berlin

    Google Scholar 

  • Allaire G, Jouve F (2008) Minimum stress optimal design with the level-set method. Eng Anal Bound Elem 32(11):909–918 (special issue)

    Article  Google Scholar 

  • Allaire G, Jouve F, Maillot H (2004) Topology optimization for minimum stress design with the homogenization method. Struct Multidisc Optim 28(2–3):87–98

    MathSciNet  Google Scholar 

  • Amstutz S (2006) Sensitivity analysis with respect to a local perturbation of the material property. Asymptot Anal 49(1–2):87–108

    MATH  MathSciNet  Google Scholar 

  • Amstutz S (2009) A penalty method for topology optimization subject to a pointwise state constraint. ESAIM:COCV

  • Amstutz S, Andrä H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216(2):573–588

    Article  MATH  MathSciNet  Google Scholar 

  • Amstutz S, Horchani I, Masmoudi M (2005) Crack detection by the topological gradient method. Control Cybern 34(1):81–101

    MATH  MathSciNet  Google Scholar 

  • Auroux D, Masmoudi M, Belaid L (2006) Image restoration and classification by topological asymptotic expansion. In: Variational formulations in mechanics: theory and applications. CIMNE, Barcelona

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization. Theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Bonnet M (2006) Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain. Comput Methods Appl Mech Eng 195:5239–5254

    Article  MATH  MathSciNet  Google Scholar 

  • Burger M, Stainko R (2006) Phase-field relaxation of topology optimization with local stress constraints. SIAM J Control Optim 45(4):1447–1466

    Article  MATH  MathSciNet  Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362

    Article  MATH  MathSciNet  Google Scholar 

  • Céa J, Garreau S, Guillaume Ph, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188(4):713–726

    Article  MATH  Google Scholar 

  • Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478

    Article  MATH  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54:331–390

    Article  Google Scholar 

  • Eschenauer HA, Kobolev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Article  Google Scholar 

  • Fancello EA (2006) Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions. Struct Multidisc Optim 32(3):229–240

    Article  MathSciNet  Google Scholar 

  • Feijóo GR (2004) A new method in inverse scattering based on the topological derivative. Inverse Probl 20(6):1819–1840

    Article  MATH  Google Scholar 

  • Garreau S, Guillaume P, Masmoudi M (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM J Control Optim 39(6):1756–1778

    Article  MATH  MathSciNet  Google Scholar 

  • Grisvard P (1989) Singularités en élasticité. Arch Ration Mech Anal 107(2):157–180

    Article  MATH  MathSciNet  Google Scholar 

  • Henrot A, Pierre M (2005) Variation et optimisation de formes. In: Mathématiques et applications, vol 48. Springer, Heidelberg

    Google Scholar 

  • Hintermüller M (2005) Fast level set based algorithms using shape and topological sensitivity. Control Cybern 34(1):305–324

    MATH  Google Scholar 

  • Jaafar Belaid L, Jaoua M, Masmoudi M, Siala L (2008) Application of the topological gradient to image restoration and edge detection. Eng Anal Bound Elem 32(11):891–899 (special issue)

    Article  Google Scholar 

  • Larrabide I, Feijóo RA, Novotny AA, Taroco E (2008) Topological derivative: a tool for image processing. Comput Struct 36(13–14):1386–1403

    Article  Google Scholar 

  • Knees D, Sändig A-M (2006) Regularity of elastic fields in composites. In: Multifield problems in solid and fluid mechanics. Lecture notes appl comput mech, vol 28. Springer, Berlin, pp 331–360

    Chapter  Google Scholar 

  • Lee S, Kwak BM (2008) Smooth boundary topology optimization for eigenvalue performance and its application to the design of a flexural stage. Eng Optim 40(3):271–285

    Article  MathSciNet  Google Scholar 

  • Masmoudi M, Pommier J, Samet B (2005) The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Probl 21:547–564

    Article  MATH  MathSciNet  Google Scholar 

  • Nazarov SA, Sokolowski J (2003) Asymptotic analysis of shape functionals. J Math Pures Appl 82(2):125–196

    MATH  MathSciNet  Google Scholar 

  • Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidisc Optim 26(1, 2):50–66

    Article  MathSciNet  Google Scholar 

  • Savin GN (1961) Stress concentration around holes, vol 1. Pergamon, New York

    Google Scholar 

  • Sokolowski J, Zochowski A (1999) On the topological derivatives in shape optmization. SIAM J Control Optim 37(4):1251–1272

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Amstutz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amstutz, S., Novotny, A.A. Topological optimization of structures subject to Von Mises stress constraints. Struct Multidisc Optim 41, 407–420 (2010). https://doi.org/10.1007/s00158-009-0425-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-009-0425-x

Keywords

Navigation