Skip to main content
Log in

Identification of coexistent load and damage

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Load reconstruction and damage identification are crucial problems in structural health monitoring. However, it seems there is not much investigation on identification of coexistent load and damage, although in practice they usually exist together. This paper presents a methodology to solve this problem based on the Virtual Distortion Method. A damaged structure is modeled by an equivalent intact structure subjected to the same loads and to virtual distortions which model the damages. The measured structural response is used to identify the loads, the distortions and to recover the stress-strain relationship of the damaged elements. This way both the damage type and extent are identified. The approach can be used off-line and online by repetitive applications in a moving time window. A numerical experiment of a truss with 5% measurement error validates that the two tested damage types (constant stiffness reduction and breathing crack) can be identified along with the loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams R, Doyle JF (2002) Multiple force identification for complex structures. Exp Mech 42(1):25–36

    Article  Google Scholar 

  • Akgün MA, Garcelon JH, Haftka RT (2001) Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas. Int J Numer Methods Eng 50(7):1587–1606

    Article  MATH  Google Scholar 

  • Allen MS, Carne TG (2006) Comparison of inverse structural filter (ISF) and sum of weighted accelerations technique (SWAT) time domain force identification methods. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference

  • Allen MS, Carne TG (2008) Delayed, multi-step inverse structural filter for robust force identification. Mech Syst Signal Process 22:1036–1054

    Article  Google Scholar 

  • Briggs JC, Tse MK (1992) Impact force identification using extracted modal parameters and pattern matching. Int J Impact Eng 12(3):361–372

    Article  Google Scholar 

  • Cao X, Sugiyamac Y, Mitsui Y (1998) Application of artificial neural networks to load identification. Comput Struct 69:63–78

    Article  MATH  Google Scholar 

  • Dahlquist G, Björck Å (2008) Numerical methods in scientific computing, vol II. http://www.mai.liu.se/~akbjo/NMbook.html

  • Doebling SW, Farrar CR, Prime MB (1998) A summary review of vibration-based damage identification methods. Shock Vibr Dig 30(2):91–105

    Article  Google Scholar 

  • Doyle JF (1997) A wavelet deconvolution method for impact force identification. Exp Mech 37(4):403–408

    Article  MathSciNet  Google Scholar 

  • Friswell MI, Penny JET (2002) Crack modeling for structural health monitoring. Structural Health Monitoring 1(2):139–148

    Article  Google Scholar 

  • Ha QP, Trinh H (2004) State and input simultaneous estimation for a class of nonlinear systems. Automatica 40:1779–1785

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen PC (2002) Deconvolution and regularization with toeplitz matrices. Numer Algorithms 29:323–378

    Article  MATH  MathSciNet  Google Scholar 

  • Holnicki-Szulc J (ed) (2008) Smart technologies for safety engineering. Wiley, Chichester

    Google Scholar 

  • Holnicki-Szulc J, Gierliński J (1995) Structural analysis, design and control by the virtual distortion method. Wiley, Chichester

    Google Scholar 

  • Inoue H, Ishida H, Kishimoto K, Shibuya T (1991) Measurement of impact load by using an inverse analysis technique: comparison of methods for estimating the transfer function and its application to the instrumented charpy impact test. JSME Int J 34(4):453–458

    Google Scholar 

  • Inoue H, Harrigan JJ, Reid SR (2001) Review of inverse analysis for indirect measurement of impact force. Appl Mech Rev 54(6):503–524

    Article  Google Scholar 

  • Jacquelin E, Bennani A, Hamelin P (2003) Force reconstruction: analysis and regularization of a deconvolution problem. J Sound Vib 265(1):81–107

    Article  Google Scholar 

  • Jankowski Ł (2009) Off-line identification of dynamic loads. Struct Multidisc Optim. 37(6):609–623. doi:10.1007/s00158-008-0249-0

    Article  Google Scholar 

  • Klinkov M, Fritzen CP (2006) Online estimation of external loads from dynamic measurements. In: Proceedings of the international conference on noise and vibration engineering (ISMA), Leuven, pp 3957–3968

  • Kokot M, Holnicki-Szulc J (2005) Health monitoring of electric circuits. Key Eng Mater 293–294:669–676

    Article  Google Scholar 

  • Kołakowski P, Mujica LE, Vehí J (2006) Two approaches to structural damage identification: model updating vs. soft computing. J Intell Mater Syst Struct 17(1):63–79

    Article  Google Scholar 

  • Kołakowski P, Wikło M, Holnicki-Szulc J (2008) The virtual distortion method—a versatile reanalysis tool for structures and systems. Struct Multidisc Optim 36(3):217–234. doi:10.1007/s00158-007-0158-7

    Article  Google Scholar 

  • Kress R (1989) Linear integral equations. Applied mathematical sciences, vol 82. Springer, New York

    MATH  Google Scholar 

  • Liu JJ, Ma CK, Kung IC, Lin DC (2000) Input force estimation of a cantilever plate by using a system identification technique. Comput Methods Appl Mech Eng 190:1309–1322

    Article  MATH  Google Scholar 

  • Ma CK, Ho CC (2004) An inverse method for the estimation of input forces acting on non-linear structural systems. J Sound Vibr 275:953–971

    Article  Google Scholar 

  • Mujica LE, Vehí J, Rodellar J, Kołakowski P (2005) A hybrid approach of knowledge-based reasoning for structural assessment. Smart Mater Struc 14:1554–1562

    Article  Google Scholar 

  • Mujica LE, Vehí J, Staszewski W, Worden K (2006) Impact damage detection in aircraft composites using knowledge-based reasoning. In: Proceeding of the 3rd European workshop on structural health monitoring, Granada, pp 601–608

  • Nair KK, Kiremidjian AS, Law KH (2006) Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. J Sound Vibr 291(1–2):349–368

    Article  Google Scholar 

  • Nocedal J, Wright S (1999) Numerical optimization. Springer Series in Operations Research. Springer, New York

    Book  MATH  Google Scholar 

  • Ödéen S, Lundberg B (1991) Prediction of impact force by impulse responses method. Int J Impact Eng 11(2):149–158

    Article  Google Scholar 

  • Putresza JT, Kołakowski P (2001) Sensitivity analysis of frame structures—Virtual Distortion Method approach. Int J Numer Methods Eng 50(6):1307–1329

    Article  MATH  Google Scholar 

  • Silva S, Dias Júnior M, Lopes V Jr (2008) Structural health monitoring in smart structures through time series analysis. Structural Health Monitoring 7(3):231–244

    Article  Google Scholar 

  • Staszewski WJ (2003) Advances in smart technologies in structural engineering. Springer, Chap Structural Health Monitoring using Guided Ultrasonic Waves, pp 117–162

  • Suwała G, Jankowski Ł (2008) A model-less method for impact mass identification. In: Proceedings of the 4th European workshop on structural health monitoring, Kraków, pp 365–373

  • Uhl T (2007) The inverse identification problem and its technical application. Arch Appl Mech 77(5):325–337

    Article  MATH  Google Scholar 

  • Wei Z, Yam LH, Cheng L (2005) NARMAX model representation and its application to damage detection for multi-layer composites. Compos Struct 68(1):109–117

    Article  Google Scholar 

  • Wikło M, Holnicki-Szulc J (2009a) Optimal design of adaptive structures. Part I, Remodeling for impact reception. Struct Multidisc Optim 37(3):305–318. doi:10.1007/s00158-008-0233-8

    Article  Google Scholar 

  • Wikło M, Holnicki-Szulc J (2009b) Optimal design of adaptive structures. Part II, Adaptation to impact loads. Struct Multidisc Optim 37(4):351–366. doi:10.1007/s00158-008-0242-7

    Article  Google Scholar 

  • Yan G (2006) Structural damage indentification methods based on generalized flexibility matrix and wavelet analysis. PhD thesis, School of Civil Engineering, Harbin Institute of Technology, China

  • Zhang Q, Jankowski Ł, Duan Z (2008) Identification of coexistent load and damage based on virtual distortion method. In: Proceedings of the 4th European workshop on structural health monitoring, Kraków, Poland, pp 1121–1128

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Jankowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Jankowski, Ł. & Duan, Z. Identification of coexistent load and damage. Struct Multidisc Optim 41, 243–253 (2010). https://doi.org/10.1007/s00158-009-0421-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-009-0421-1

Keywords

Navigation