The application of gradient-only optimization methods for problems discretized using non-constant methods

Abstract

We study the minimization of objective functions containing non-physical jump discontinuities. These discontinuities arise when (partial) differential equations are discretized using non-constant methods and the resulting numerical solutions are used in computing the objective function. Although the functions may become discontinuous, gradient information may be computed at every point. Gradient information is computable everywhere since every point has an associated discretization for which (semi) analytical sensitivities can be calculated. Rather than the construction of global approximations using only function value information to overcome the discontinuities, we propose to use only the gradient information. We elaborate on the modifications of classical gradient based optimization algorithms for use in gradient-only approaches, and we then present gradient-only optimization strategies using both BFGS and a new spherical quadratic approximation for sequential approximate optimization (SAO). We then use the BFGS and SAO algorithms to solve three problems of practical interest, both unconstrained and constrained.

This is a preview of subscription content, access via your institution.

References

  1. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    MATH  Article  MathSciNet  Google Scholar 

  2. Barthelemy J-FM, Haftka RT (1993) Approximation concepts for optimum structural design—a review. Struct Optim 5:129–144

    Article  Google Scholar 

  3. Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programming—theory and algorithms, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  4. Brandstatter BR, Ring W, Magele Ch, Richter KR (1998) Shape design with great geometrical deformations using continuously moving finite element nodes. IEEE Trans Magn 34(5):2877–2880

    Article  Google Scholar 

  5. Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45(1–3):50–79

    Article  Google Scholar 

  6. Garcia MJ, Gonzalez CA (2004) Shape optimisation of continuum structures via evolution strategies and fixed grid finite element analysis. Struct Multidisc Optim V26(1):92–98

    Article  MathSciNet  Google Scholar 

  7. Gould N, Orban D, Toint P (2005) Numerical methods for Large-Scale nonlinear optimization. Acta Numer 14(1):299–361

    MATH  Article  MathSciNet  Google Scholar 

  8. Groenwold AA, Etman LFP, Snyman JA, Rooda JE (2007) Incomplete series expansion for function approximation. Struct Multidisc Optim 34:21–40

    Article  MathSciNet  Google Scholar 

  9. Haftka RT, Gürdal Z (1991) Elements of structural optimization, solid mechanics and its applications, 3rd edn, vol 11. Kluwer Academic, Dordrecht

    Google Scholar 

  10. Kocks UF (1976) Laws for work-hardening and low-temperature creep. J Eng Mater Technol Trans ASME 98 Ser H(1):76–85

    Google Scholar 

  11. Kodiyalam S, Thanedar PB (1993) Some practical aspects of shape optimization and its influence on intermediate mesh refinement. Finite Elem Anal Des 15(2):125–133

    Article  Google Scholar 

  12. Kok S, Beaudoin AJ, Tortorelli DA (2002) On the development of stage IV hardening using a model based on the mechanical threshold. Acta Mater 50(7):1653–1667

    Article  Google Scholar 

  13. Lui DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 54(1–3):503–528

    Google Scholar 

  14. Olhoff N, Rasmussen J, Lund E (1993) A method of exact numerical differentiation for error elimination in finite element based semi-analytical shape sensitivity analysis. Mechan Struct Mach 21:1–66

    Article  MathSciNet  Google Scholar 

  15. Persson P-O, Strang G (2004) A simple mesh generator in matlab. SIAM Rev 46(2):329–345

    MATH  Article  MathSciNet  Google Scholar 

  16. Potra FA, Shi Y (1995) Efficient line search algorithm for unconstrained optimization. J Optim Theory Appl 85(3):677–704

    MATH  Article  MathSciNet  Google Scholar 

  17. Quapp W (1996) A gradient-only algorithm for tracing a reaction path uphill to the saddle of a potential energy surface. Chem Phys Lett 253(3–4):286–292

    Article  Google Scholar 

  18. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4:409–435

    MATH  Article  MathSciNet  Google Scholar 

  19. Schleupen A, Maute K, Ramm E (2000) Adaptive FE-procedures in shape optimization. Struct Multidisc Optim 19(4):282302

    Article  Google Scholar 

  20. Shor NZ, Kiwiel KC, Ruszcaynski A (1985) Minimization methods for non-differentiable functions. Springer, New York

    MATH  Google Scholar 

  21. Simpson TW, Toropov V, Balabanov V, Viana FAC (2008) Design and analysis of computer experiments in multidisciplinary design optimization: a review of how far we have come—or not. In: Proc 12th AIAA/ISSMO multidisciplinary analysis and optimization conference, Victoria, 10–12 September 2008

  22. Snyman JA (1982) A new and dynamic method for unconstrained minimization. Appl Math Model 6(6):449–462

    MATH  Article  MathSciNet  Google Scholar 

  23. Snyman JA (2005a) A gradient-only line search method for the conjugate gradient method applied to constrained optimization problems with severe noise in the objective function. Int J Numer Methods Eng 62(1):72–82

    MATH  Article  MathSciNet  Google Scholar 

  24. Snyman JA (2005b) Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. Applied optimization, 2nd edn, vol 97. Springer, New York

    Google Scholar 

  25. Snyman JA, Hay AM (2001) The spherical quadratic steepest descent (SQSD) method for unconstrained minimization with no explicit line searches. Comput Math Appl 42(1–2):169–178

    MATH  MathSciNet  Google Scholar 

  26. Snyman JA, Hay AM (2002) The dynamic-Q optimization method: an alternative to SQP? Comput Math Appl 44(12):1589–1598

    MATH  Article  MathSciNet  Google Scholar 

  27. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12:555–573

    MATH  Article  MathSciNet  Google Scholar 

  28. Toropov VV (1989) Simulation approach to structural optimization. Struct Optim 1:37–46

    Article  Google Scholar 

  29. Van Miegroet L, Mos N, Fleury C, Duysinx P (2005) Generalized shape optimization based on the level set method. In: 6th world congresses of structural and multidisciplinary optimization. International Society for Structural and Multidisciplinary Optimization, Daejeon, pp 1–10

  30. Voce E (1955) A practical strain-hardening function. Metallurgica 51:219–226

    Google Scholar 

  31. Wallis J (1685) A treatise of algebra, both historical and practical. London

  32. Wilke DN, Kok S, Groenwold AA (2006) A quadratically convergent unstructured remeshing strategy for shape optimization. Int J Numer Methods Eng 65(1):1–17

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel N. Wilke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilke, D.N., Kok, S. & Groenwold, A.A. The application of gradient-only optimization methods for problems discretized using non-constant methods. Struct Multidisc Optim 40, 433 (2010). https://doi.org/10.1007/s00158-009-0389-x

Download citation

Keywords

  • Gradient-only optimization
  • Step discontinuity
  • Partial differential equation
  • Non-constant discretization