Skip to main content
Log in

A new multi-objective programming scheme for topology optimization of compliant mechanisms

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents an alternative method in implementing multi-objective optimization of compliant mechanisms in the field of continuum-type topology optimization. The method is designated as “SIMP-PP” and it achieves multi-objective topology optimization by merging what is already a mature topology optimization method—solid isotropic material with penalization (SIMP) with a variation of the robust multi-objective optimization method—physical programming (PP). By taking advantages of both sides, the combination causes minimal variation in computation algorithm and numerical scheme, yet yields improvements in the multi-objective handling capability of topology optimization. The SIMP-PP multi-objective scheme is introduced into the systematic design of compliant mechanisms. The final optimization problem is formulated mathematically using the aggregate objective function which is derived from the original individual design objectives with PP, subjected to the specified constraints. A sequential convex programming method, the method of moving asymptotes (MMA) is then utilized to process the optimization evolvement based on the design sensitivity analysis. The main findings in this study include distinct advantages of the SIMP-PP method in various aspects such as computation efficiency, adaptability in convex and non-convex multi-criteria environment, and flexibility in problem formulation. Observations are made regarding its performance and the effect of multi-objective optimization on the final topologies. In general, the proposed SIMP-PP method is an appealing multi-objective topology optimization scheme suitable for “real world” problems, and it bridges the gap between standard topological design and multi-criteria optimization. The feasibility of the proposed topology optimization method is exhibited by benchmark examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Ananthasuresh GK, Kota S, Gianchandani Y (1994) A methodical approach to the design of compliant micro-mechanisms. In: Solid-state sensor and actuator workshop, pp 189–192

  • Ananthasuresh GK, Howell LL (2005) Mechanical design of compliant microsystems—a perspective and prospects. J Mech Des 127(4):736–738

    Article  Google Scholar 

  • Ansola R, Veguería E, Canales J, Tárrago JA (2007) A simple evolutionary topology optimization procedure for compliant mechanism design. Finite Elem Anal Des 44(1–2):53–62

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topology in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin

    Google Scholar 

  • Bendsøe MP, Lund E, Olhoff N, Sigmund O (2005) Topology optimization—broadening the areas of application. Control Cybern 34(1):7–35

    MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of nonlinear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Canfield S, Frecker M (2000) Topology optimization of compliant mechanical amplifiers for piezoelectric actuators. Struct Multidisc Optim 20:269–279

    Article  Google Scholar 

  • Chen W, Sahai A, Messac A, Sundararj JG (2000) Exploration of the effectiveness of physical programming in robust design. J Mech Des 122(2):155–164

    Article  Google Scholar 

  • Eschenauer H, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  • Frecker M (2003) Recent advances in optimization of smart structures and actuators. J Intell Mater Syst Struct 14(4–5):207–216

    Article  Google Scholar 

  • Frecker MI, Ananthasuresh GK, Nishiwaki S, Kikuchi N, Kota S (1997) Topological synthesis of compliant mechanisms using multi-criteria optimization. J Mech Des 119(2):238–245

    Article  Google Scholar 

  • Howell LL (2001) Compliant mechanisms. Wiley, New York

    Google Scholar 

  • Howell LL, Midha A (1996) A loop-closure theory for the analysis and synthesis of compliant mechanisms. J Mech Des 118(1):121–125

    Article  Google Scholar 

  • Kota S, Lu KJ, Kreiner Z, Trease B, Arenas J, Geiger J (2005) Design and application of compliant mechanisms for surgical tools. J Biomech Eng 127(6):981–989

    Article  Google Scholar 

  • Kikuchi N, Nishiwaki S, Fonseca JSO, Silva ECN (1998) Design optimization method for compliant mechanisms and material microstructure. Comput Methods Appl Mech Eng 151:401–417

    Article  MATH  MathSciNet  Google Scholar 

  • Lau GK, Du H, Lim MK (2001) Use of functional specifications as objective functions in topological optimization of compliant mechanism. Comput Methods Appl Mech Eng 190:4421–4433

    Article  Google Scholar 

  • Luo Z, Chen LP, Yang JZ, Zhang YQ, Abdel-Malek K (2005) Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidisc Optim 30(2):142–154

    Article  Google Scholar 

  • Luo Z, Yang JZ, Chen LP (2006a) A new procedure for continuum topology optimization of aerodynamic missile designs. Aerosp Sci Technol 10:364–373

    Article  Google Scholar 

  • Luo Z, Yang JZ, Chen LP, Zhang YQ, Abdel-Malek K (2006b) A new hybrid fuzzy-goal programming scheme for multi-objective topological optimization of static and dynamic structures under multiple loading conditions. Struct Multidisc Optim 31(1):26–39

    Article  MathSciNet  Google Scholar 

  • Luo Z, Tong LY, Wang MY, Wang SY (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705

    Article  MATH  MathSciNet  Google Scholar 

  • Luo Z, Tong LY, Wang MY (2008) Design of distributed compliant micromechanisms with an implicit free boundary representation. Struct Multidisc Optim 36(6):607–621

    Article  MathSciNet  Google Scholar 

  • Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidisc Optim 26(6):369–395

    Article  MathSciNet  Google Scholar 

  • Messac A (1996) Physical programming: effective optimization for computational design. AIAA 34(1):149–158

    Article  MATH  Google Scholar 

  • Messac A, Wilson BH (1998) Physical programming for computational control. AIAA 36(2):219–226

    Article  MATH  Google Scholar 

  • Messac A, Puemi-Sukam C, Melachrinoudis E (2001) Mathematical and pragmatic perspectives of physical programming. AIAA 39(5):885–893

    Article  Google Scholar 

  • Messac A, Dessel SV, Mullur AM (2004) Optimization of large-scale rigidified inflatable structures for housing using physical programming. Struct Multidisc Optim 26(1–2):139–151

    Article  Google Scholar 

  • Mlejnek HP (1992) Some aspects of the genesis of structures. Struct Multidisc Optim 5(1–2):64–69

    Google Scholar 

  • Nishiwaki S, Frecker MI, Min S, Kikuchi N (1998) Topology optimization of compliant mechanisms using the homogenization method. Int J Numer Methods Eng 42(3):535–559

    Article  MATH  MathSciNet  Google Scholar 

  • Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large displacement compliant mechanisms. Int J Numer Methods Eng 50:2683–2705

    Article  MATH  Google Scholar 

  • Rahmatalla S, Swan CC (2005) Sparse monolithic compliant mechanisms using continuum structural topology optimization. Int J Numer Methods Eng 62(1):1579–1605

    Article  MATH  Google Scholar 

  • Rozvany GIN, Kirsch U, Bendsøe MP, Sigmund O (1995) Layout optimization of structures. Appl Mech Rev 48(2):41–119

    Article  Google Scholar 

  • Rozvany GIN (2001) Aim, scope, methods, history and unified terminology of computer aided topology optimization in structural mechanisms. Struct Multidisc Optim 21(2):90–108

    Article  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37(3):217–237

    Article  MathSciNet  Google Scholar 

  • Saxena A, Ananthasuresh GK (2000) On an optimal property of compliant mechanisms. Struct Multidisc Optim 19(1):36–49

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mechan Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2001a) Design of multiphysics actuator using topology optimization—part I: one material structure. Comput Methods Appl Mech Eng 190(49–50):6577–6604

    Article  MATH  Google Scholar 

  • Sigmund O (2001b) A 99 line topology optimization code written in MATLAB. Struct Multidisc Optim 31(6):419–429

    Google Scholar 

  • Sigmund O (2007) Morphology based black and white filters for topology optimization. Struct Multidisc Optim 33:401–424

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MATH  MathSciNet  Google Scholar 

  • Tai K, Prasad J (2007) Target-matching test problem for multiobjective topology optimization using genetic algorithms. Struct Multidisc Optim 34(4):333–345

    Article  Google Scholar 

  • Tang WY, Tong LY, Gu YX (2005) Improved genetic algorithm for design optimization of truss structures with size, shape and topology variables. Int J Numer Methods Eng 62(13):1737–1762

    Article  MATH  Google Scholar 

  • Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MATH  MathSciNet  Google Scholar 

  • Wang MY, Chen SK, Wang XM, Mei YL (2005) Design of multi-material compliant mechanisms using level set methods. J Mech Des 127(5):941–956

    Article  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Yin L, Ananthasuresh GK (2003) Design of distributed compliant mechanisms. Mech Base Des Struct Mach 31(2):151–179

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyong Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Luo, Z. & Tong, L. A new multi-objective programming scheme for topology optimization of compliant mechanisms. Struct Multidisc Optim 40, 241–255 (2010). https://doi.org/10.1007/s00158-008-0355-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-008-0355-z

Keywords

Navigation