Skip to main content
Log in

Topological sensitivity derivative and finite topology modifications: application to optimization of plates in bending

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The concept of topological sensitivity derivative is introduced and applied to study the problem of optimal design of structures. It is assumed, that virtual topology variation is described by topological parameters. The topological derivative provides the gradients of objective functional and constraints with respect to these parameters. This derivative enables formulation of the conditions of topology transformation. In this paper formulas for the topological sensitivity derivative for bending plates are derived. Next, the topological derivative is used in the optimization process in order to formulate conditions of finite topology modifications and in order to localize positions of the modifications. In the case of plates they are related to introduction of holes and introduction of stiffeners. The theoretical considerations are illustrated by some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G (2002) Shape optimization by the homogenization method. Springer, New York

    MATH  Google Scholar 

  • Allaire G, Jouve F, Toader A-M (2002) A level set method for shape optimization. CR Acad Sci Paris, Série I 334:1125–1130

    MATH  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level set method. J Comp Phys 194:363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G, de Gournay F, Jouve F, Toader A-M (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34:59–80

    MATH  Google Scholar 

  • Bendsoe MP (1997) Optimization of structural topology, shape and material. Springer, Berlin

    Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comp Meth Appl Mech Eng 71:197–224

    Article  MathSciNet  Google Scholar 

  • Bojczuk D (2006) Method of optimal reinforcement of structures based on topological derivative. In: Mota Soares C et al (eds) Proceedings of the III European conference on computational mechanics. Springer, Lisbon, on CD-ROM

    Google Scholar 

  • Bojczuk D, Mróz Z (1998a) On optimal design of supports in beam and frame structures. Struct Optim 16:47–57

    Article  Google Scholar 

  • Bojczuk D, Mróz Z (1998b) Optimal design of trusses with account for topology variation. Mech Struct Mach 26:21–40

    Article  Google Scholar 

  • Bojczuk D, Mróz Z (1999) Optimal topology and configuration design of trusses with stress and buckling constraints. Struct Optim 17:25–35

    Article  Google Scholar 

  • Bojczuk D, Mróz Z (2005) Determination of optimal actuator forces and positions in smart structures using adjoint method. Struct Multidisc Optim 30:308–319

    Article  Google Scholar 

  • Bojczuk D, Szteleblak W (2005) Topology and shape optimization of plates using finite variations. In: Proceedings of the 16th international conference on computer methods in mechanics, Częstochowa (Poland), on CD-ROM

  • Bojczuk D, Szteleblak W (2006) Application of finite variations to topology and shape optimization of 2D structures. J Theoret Appl Mech 44:323–349

    Google Scholar 

  • Bojczuk D, Szteleblak W (2008) Optimization of layout and shape of stiffeners in 2D structures. Comp Struct 86:1436–1446

    Article  Google Scholar 

  • Burczyński T, Kokot G (2003) Evolutionary algorithms and boundary element method in generalized shape optimization. J Theor Appl Mech 41:341–364

    Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set method. J Comp Phys 194:344–362

    Article  MATH  MathSciNet  Google Scholar 

  • Cea J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188:713–726

    Article  MATH  MathSciNet  Google Scholar 

  • Dems K, Mróz Z (1984) Variational approach by means of adjoint systems to structural optimization and sensitivity analysis. II. Structure shape variation. Int J Solids Struct 19:527–552

    Article  Google Scholar 

  • Dems K, Mróz Z (1989) Shape sensitivity analysis and optimal design of physically nonlinear plates. Arch Mech 41(4):481–501

    MATH  MathSciNet  Google Scholar 

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Article  Google Scholar 

  • Garreau S, Guillaume P, Masmoudi M (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM J Control Optim 39:1756–1778

    Article  MATH  MathSciNet  Google Scholar 

  • Kirsch U (1989) Optimal topologies of structures. Appl Mech Rev 42:223–239

    Article  Google Scholar 

  • Lewiński T, Telega JJ (2000) Plates, laminates and shells. Asymptotic analysis and homogenization. World Scientific, Singapore

    Google Scholar 

  • Mróz Z, Bojczuk D (2000) Topological derivative and its application in optimal design of truss and beam structures for displacement, stress and buckling constraints. In: Rozvany GIN, Olhof N (eds) Topology optimization of structures and composite continua. Kluwer, Boston, MA, pp 91–105

    Google Scholar 

  • Mróz Z, Bojczuk D (2003) Finite topology variation in optimal design of structures. Struct Multidisc Optim 25:153–173

    Article  Google Scholar 

  • Mróz Z, Bojczuk D (2006) Topological sensitivity derivative: application in optimal design and material science. Found Civ Envir Eng 7:229–250

    Google Scholar 

  • Novotny AA, Feijóo RA, Padra C, Taroco E (2005) Topological derivative for linear elastic plate bending problems. Control Cybern 34:339–361

    MATH  Google Scholar 

  • Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comp Phys 78:12–49

    Article  MathSciNet  Google Scholar 

  • Osher S, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum. J Comp Phys 171:272–288

    Article  MATH  MathSciNet  Google Scholar 

  • Petryk H, Mróz Z (1996) Time derivatives of integrals and functionals defined on varying volume and surface domains. Arch Mech 38:697–724

    Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comp Phys 163:489–528

    Article  MATH  MathSciNet  Google Scholar 

  • Sokołowski J, Żochowski T (1999) On topological derivative in shape optimization. SIAM J Control Optim 37:1251–1272

    Article  MATH  MathSciNet  Google Scholar 

  • Sokołowski J, Żochowski T (2003) Optimality conditions for simultaneous topology and shape optimization. SIAM J Control Optim 42:1198–1221

    Article  MATH  MathSciNet  Google Scholar 

  • Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill

  • Wang X, Wang MY, Guo D (2004) Structural shape and topology optimization in a level-set-based framework of region representation. Struct Multidisc Optim 27:1–19

    Article  MathSciNet  Google Scholar 

  • Woźniak C (ed) (2001) Mechanics of elastic plates and shells [in Polish]. PWN, Warszawa

    Google Scholar 

  • Xia Q, Wang MY, Wang S, Chen S (2006) Semi-Lagrange method for level-set based structural topology and shape optimization. Struct Multidisc Optim 31:419–429

    Article  MathSciNet  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comp Struct 49:885–896

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Bojczuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojczuk, D., Mróz, Z. Topological sensitivity derivative and finite topology modifications: application to optimization of plates in bending. Struct Multidisc Optim 39, 1–15 (2009). https://doi.org/10.1007/s00158-008-0333-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-008-0333-5

Keywords

Navigation