Skip to main content
Log in

Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm

  • Industrial Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper shows a promising method for acoustic barrier design using a new acoustic material called Sonic Crystals (SCs). The configuration of these SCs is set as a multiobjective optimization problem which is very difficult to solve with conventional optimization techniques. The paper presents a new parallel implementation of a Multiobjective Evolutionary Algorithm called ev-MOGA (also known as ) and its application in a complex design problem. ev-MOGA algorithm has been designed to converge towards a reduced, but well distributed, representation of the Pareto Front (solution of the multiobjective optimization problem). The algorithm is presented in detail and its most important properties are discussed. To reduce the ev-MOGA computational cost when objective functions are substantial, a basic parallelization has been implemented on a distributed platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alander J (2002) An indexed bibliography of genetic algorithms & pareto and constrainedoptimization. Tech Rep, Dpt of Information Technology, University of Vaasa

  • Cantú-Paz E (1997) A survey of parallel genetic algorithms. Tech Rep 97003, Illimois Genetic Algorithms Laboratoty

  • Cervera F, Sanchis L, Sánchez-Pérez JV, Martínez-Sala R, Rubio C, Meseguer F, López C, Caballero D, Sánchez-Dehesa J (2002) Refractive acoustic devices for airborne sound. Phys Rev Lett 88:0239021–0239024

    Google Scholar 

  • Chen Y, Ye Z (2001) Theoretical analysis of stop bands in two-dimensional periodic scattering arrays. Phys Rev E 64:036616

    Article  Google Scholar 

  • Coello C, Toscano G, Mezura E (2005) Information processing with evolutionary algorithms. In: Grana M, Duro R, d’Anjou A, Wang PP (eds) Information processing with evolutionary algorithms: from industrial applicationsto academic speculations. Springer, New York, pp 213–231

    Google Scholar 

  • Coello C, Veldhuizen D, Lamont G (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Deb K (2007) Current trends in evolutionary multi-objective optimization. Int J Simul Multidiscipl Des Optim 1:1–8

    Article  MATH  Google Scholar 

  • Eshelman LJ (1991) The chc adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Proceedings of the first workshop on foundations of genetic algorithms. Morgan Kaufmann, San Francisco, pp 265–283

  • Fonseca C, (1995) Multiobjective genetic algorithms with application to control engineeringproblems. PhD thesis, Dpt of Automatic Control and Systems Engineering, University of Sheffield

  • Fuster E, Romero-García V, García-Raffi LM, Sánchez-Pérez EA, Sopena M, Sánchez-Pérez JV (2006) A phenomenological model for sonic crystals based on artificial neural networks. J Acoust Soc Am 120(2):1–6

    Google Scholar 

  • García-Pablos D, Sigalas M, de Espinosa FM, Torres M, Kafesaki M, García, N (2000) Theory and experiments on elastic band gaps. Phys Rev Lett 84:4349–4352

    Article  Google Scholar 

  • Gazonas GA, Weile DS, Wildman R, Mohan A (2006) Genetic algorithm optimization of phononic bandgap structures. Int J Solids Struct 43:5851–5866

    Article  MATH  Google Scholar 

  • Hakkansson A, Cervera F, Sánchez-Dehesa J (2005) Sound focusing by flat acoustic lenses without negative refraction. Appl Phys Lett 86:0541021–0541023

    Article  Google Scholar 

  • Herrero J, Blasco X, Martínez M, Ramos C, Sanchis J (2007) Non-linear robust identification of a greenhouse model using multi-objective evolutionary algorithms. Biosyst Eng 98(3):335–346

    Article  Google Scholar 

  • Herrero JM (2006) Non-linear robust identification using evolutionary algorithms. PhD thesis, Universidad Politécnica de Valencia, Valencia

  • Hussein MI, Hamza K, Hulbert GM, Saitou K (2007) Optimal synthesis of 2d phononic crystals for broadband frequency isolation. Waves Random Complex Media 17(4):491–510

    Article  MathSciNet  Google Scholar 

  • Hussein MI, Hamza K, Hulbert GM, Scott RA, Saitou K (2006) Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Struct Multidisc Optim 31:60–75

    Article  Google Scholar 

  • Kafesaki M, Economou E (1999) Multiple scattering theory for three-dimensional periodic acoustic composites. Phys Rev B 60:11993

    Article  Google Scholar 

  • Kohn W, Rostoker N (1954) Solution of the schrodinger equation in periodic lattices with an aplication to metallic lithium. Phys Rev 94:1111

    Article  MATH  Google Scholar 

  • Korringa J (1947) On th calculation of the energy of a bloch wave in a metal. Physica XIII:392

    Article  MathSciNet  Google Scholar 

  • Kushwaha M (1997) Stop-bands for periodic metallic rods: Sculptures that can filter the noise. Appl Phys Lett 70:3218–3220

    Article  Google Scholar 

  • Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multi-objective optimization. Evol Comput 10(3):263–282

    Article  Google Scholar 

  • Martínez-Sala R, Sancho J, Sánchez J, Gómez V, Llinares J, Meseguer F (1995) Sound attenuation by sculpture. Nature 378:241

    Article  Google Scholar 

  • Miettinen KM (1998) Nonlinear multiobjective optimization. Kluwer, Dordrecht

    Google Scholar 

  • Mishra S, Deb K, Mohan M (2005) Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol Comput 13(4):501–526

    Article  Google Scholar 

  • Romero-García V, Fuster E, García-Raffi LM, Sánchez-Pérez EA, Sopena M, Llinares J, Sánchez-Pérez JV (2006) Band gap creation using quasiordered structures based on sonic crystals. Appl Phys Lett 88:1741041–17410413

    Article  Google Scholar 

  • Sánchez-Pérez JV, Caballero D, Martínez-Sala R, Rubio C, Sánchez-Dehesa J, Meseguer F, Llinares J, Gálvez F (1998) Sound attenuation by a two-dimensional array of rigid cylinders. Phys Rev Lett 80:5325–5328

    Article  Google Scholar 

  • Sánchez-Pérez JV, Rubio C, Martínez-Sala R, Sánchez-Grandia R, Gómez V (2002) Acoustic barriers based on periodic arrays of scatterers. Appl Phys Lett 27:5240–5242

    Article  Google Scholar 

  • Sanchis L, Hakkansson A, López-Zanón D, Bravo-Abad J, Sánchez-Dehesa J (2004) Integrated optical devices design by genetic algorithm. Appl Phys Lett 84:4460–4462

    Article  Google Scholar 

  • Shen M, Cao W (2001) Acoustic band-gap engineering using finite-size layered structures of multiple periodicity. Appl Phys Lett 75:3713–3715

    Article  Google Scholar 

  • Sigalas M, Economou E (1992) Elastic and acoustic wave band structure. J Sound Vib 158:377

    Article  Google Scholar 

  • Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: Methods and applications. Ph.D. thesis, Swiss Federal Institute of Technology Zurich

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Blasco.

Additional information

Partially supported by MEC (Spanish Government) and FEDER funds: projects DPI2005-07835, MAT2006-03097 and Generalitat Valenciana (Spain) projects GV06/026, GV/2007/191.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrero, J.M., García-Nieto, S., Blasco, X. et al. Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Struct Multidisc Optim 39, 203–215 (2009). https://doi.org/10.1007/s00158-008-0323-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-008-0323-7

Keywords

Navigation