Structural and Multidisciplinary Optimization

, Volume 36, Issue 4, pp 329–345 | Cite as

Large-scale parallel topology optimization using a dual-primal substructuring solver

  • Anton EvgrafovEmail author
  • Cory J. Rupp
  • Kurt Maute
  • Martin L. Dunn
Research Paper


Parallel computing is an integral part of many scientific disciplines. In this paper, we discuss issues and difficulties arising when a state-of-the-art parallel linear solver is applied to topology optimization problems. Within the topology optimization framework, we cannot readjust domain decomposition to align with material decomposition, which leads to the deterioration of performance of the substructuring solver. We illustrate the difficulties with detailed condition number estimates and numerical studies. We also report the practical performances of finite element tearing and interconnection/dual–primal solver for topology optimization problems and our attempts to improve it by applying additional scaling and/or preconditioning strategies. The performance of the method is finally illustrated with large-scale topology optimization problems coming from different optimal design fields: compliance minimization, design of compliant mechanisms, and design of elastic surface wave-guides.


Topology optimization Parallel computing Scalability Domain decomposition Iterative solvers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basu U, Chopra AK (2003) Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite element implementation. Comput Methods Appl Mech Eng 192(11–12):1337–1375zbMATHCrossRefGoogle Scholar
  2. Bendsøe MP (2006) Multidisciplinary topology optimization. In: Proc. 11th AIAA/ISSMO Symposium on Multidiciplinary Analysis and OptimizationGoogle Scholar
  3. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefGoogle Scholar
  4. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinGoogle Scholar
  5. Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37–38):4911–4928zbMATHCrossRefMathSciNetGoogle Scholar
  6. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158zbMATHCrossRefMathSciNetGoogle Scholar
  7. Bramble JH, Pasciak JE, Schatz AH (1986) The construction of preconditioners for elliptic problems by substructuring. I. Math Comp 47(175):103–134zbMATHCrossRefMathSciNetGoogle Scholar
  8. Dohrmann CR (2003) A study of two domain decomposition preconditioners. Tech. Rep. SAND2003-4391, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550Google Scholar
  9. Duysinx P, Bruyneel M (2002) Recent progress in preliminary design of mechanical components with topology optimisation. In: Chedmail P, Cognet G, Fortin C, Mascle C, Pegna J (eds) Book of selected papers presented at 3rd Conference on Integrated Design and Manufacturing in Mechanical Engineering IDMME2000/Forum 2000 of SCGM/CSME, Kluwer Publ.Google Scholar
  10. Evgrafov A, Pingen G, Maute K (2006) Topology optimization of fluid problems by the lattice Boltzmann method. In: Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives. Springer, Netherlands, pp 559–568CrossRefGoogle Scholar
  11. Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D (2001) FETI-DP: a dual–primal unified FETI method—part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523–1544zbMATHCrossRefMathSciNetGoogle Scholar
  12. Farhat C, Li J, Avery P (2005) A FETI-DP method for the parallel iterative solution of indefinite and complex-valued solid and shell vibration problems. International Journal for Numerical Methods in Engineering 63(3):398–427zbMATHCrossRefMathSciNetGoogle Scholar
  13. Kim TS, Kim JE, Kim YY (2004) Parallelized structural topology optimization for eigenvalue problems. Int J Solids Struct 41:2623–2641zbMATHCrossRefGoogle Scholar
  14. Klawonn A, Widlund OB, Dryja M (2002) Dual–primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J Numer Anal 40(1):159–179 (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  15. Lee FH, Phoon K, Lim K, Chan S (2002) Performance of Jacobi preconditioning in Krylov subspace solution of finite element equations. Int J Numer Anal Meth Geomechm 26:341–372zbMATHCrossRefGoogle Scholar
  16. Li J, Widlund OB (2006) FETI-DP, BDDC, and block Cholesky methods. Int J Numer Methods Eng 66(2):250–271zbMATHCrossRefMathSciNetGoogle Scholar
  17. Mahdavi A, Balaji R, Frecker M, Mockensturm E (2006) Topology optimization of 2d continua for minimum compliance using parallel computing. Struct Multidisc Optim 32(2):121–132CrossRefGoogle Scholar
  18. Mandel J, Tezaur R (2001) On the convergence of a dual-primal substructuring method. Numer Math 88(3):543–558zbMATHCrossRefMathSciNetGoogle Scholar
  19. Mandel J, Dohrmann CR, Tezaur R (2005) An algebraic theory for primal and dual substructuring methods by constraints. Appl Numer Math 54(2):167–193zbMATHCrossRefMathSciNetGoogle Scholar
  20. O’Neal D, Murgie S (2001) ANSYS benchmarking project: evaluation of the distributed domain solver. Tech. Rep., ANSYS, Inc., Pittsburgh, PA, USAGoogle Scholar
  21. Pajot JM (2006) Topology optimization of geometrically nonlinear structures including thermo-mechanical coupling. PhD thesis, University of Colorado at BoulderGoogle Scholar
  22. Petersson J (1999) A finite element analysis of optimal variable thickness sheets. SIAM J Numer Anal 36(6):1759–1778zbMATHCrossRefMathSciNetGoogle Scholar
  23. Rockafellar RT, Wets RJB (1998) Variational analysis. Springer, BerlinzbMATHGoogle Scholar
  24. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254CrossRefGoogle Scholar
  25. Rupp CJ, Evgrafov A, Maute K, Dunn ML (2006) Design of phononic materials/structures for surface wave devices using topology optimization. Struct Multidisc Optim Online, doi:10.1007/s00158-006-0076-0
  26. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia, PAzbMATHGoogle Scholar
  27. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRefGoogle Scholar
  28. Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidisc Optim (2):120–127Google Scholar
  29. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16(1):68–75Google Scholar
  30. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373zbMATHCrossRefMathSciNetGoogle Scholar
  31. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573zbMATHCrossRefMathSciNetGoogle Scholar
  32. Vemaganti K, Lawrence EW (2005) Parallel methods for optimality criteria-based topology optimization. Comp Methods Appl Mech Eng 194:3637–3667zbMATHCrossRefMathSciNetGoogle Scholar
  33. Wang S, de Sturler E, Paulino GH (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441–2468CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Anton Evgrafov
    • 1
    Email author
  • Cory J. Rupp
    • 2
  • Kurt Maute
    • 1
  • Martin L. Dunn
    • 2
  1. 1.Center for Aerospace Structures, Department of Aerospace Engineering SciencesUniversity of ColoradoBoulderUSA
  2. 2.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations