Skip to main content
Log in

On sensitivity analysis of nonsmooth multidisciplinary optimization problems in engineering process line applications

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study multidisciplinary optimization problems where the objective functions and the vector-valued mathematical models are not necessarily differentiable in a classical sense. Moreover, we assume that the state equation consists of several submodels, that is, unit-process models. This study is based on the nonsmooth analysis introduced by Clarke and the theory of H-differentiable functions by Gowda. It concentrates on two mathematical tools needed in sensitivity analysis of the multidisciplinary optimization problems, namely, the generalized chain rule for vector-valued functions and the implicit subdifferentiation formula. We employ these tools to obtain subgradient information of the problems considered. Finally, we present a numerical example and compare the obtained results with finite differences by means of accuracy and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonnans JS, Guilbaud T, Ketfi-Cherif A, von Wissel D, Sagastizábal C, Zidani H (2004) Parametric optimization of hybrid car engines. Optimization and Engineering 5:395–415

    Article  MATH  MathSciNet  Google Scholar 

  • Clarke FH (1989) Optimization and nonsmooth analysis, 2nd edn. Centre de Recherches Mathématiques, Université de Montréal, Montréal

    Google Scholar 

  • Clarke FH, Ledyaev YS, Stern RJ, Wolenski PR (1998) Nonsmooth analysis and control theory. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Gowda MS (2004) Inverse and implicit function theorems for H-differentiable and semismooth functions. Optim Methods Softw 19(5):443–461

    Article  MATH  MathSciNet  Google Scholar 

  • Gowda MS, Ravindran G (2000) Algebraic univalence theorems for nonsmooth functions. J Math Anal Appl 252:917–935

    Article  MATH  MathSciNet  Google Scholar 

  • Hämäläinen J, Miettinen K, Tarvainen P, Toivanen J (2003) Interactive solution approach to a multiobjective optimization problem in paper machine headbox design. J Optim Theory Appl 116(2):265–281

    Article  MATH  MathSciNet  Google Scholar 

  • Harker PT, Xiao B (1990) Newton's method for the nonlinear complementary problem: a B-differentiable equation approach. Math Program 48:339–357

    Article  MATH  MathSciNet  Google Scholar 

  • Isenor G, Pintér JD, Cada M (2003) A global optimization approach to laser design. Optimization and Engineering 4:177–196

    Article  MATH  MathSciNet  Google Scholar 

  • Jeyakumar V (1998) Solving B-differentiable equations. Applied mathematics research report 98/27. University of New South Wales, Sydney

  • Jeyakumar V, Luc DT (1998) Approximate Jacobian matrices for nonsmooth continuous maps and C1-optimization. SIAM J Control Optim 36(5):1815–1832

    Article  MATH  MathSciNet  Google Scholar 

  • Jongen HT, Klatte D, Tammer K (1990) Implicit function and sensitivity of stationary point. Math Program 49:123–138

    Article  MATH  MathSciNet  Google Scholar 

  • Kanzow C, Kleinmichel H (1998) A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput Optim Appl 11:227–251

    Article  MATH  MathSciNet  Google Scholar 

  • Lemaréchal C (1989) Nondifferentiable optimization. In: Nemhauser GL, Rinnooy Kan AHG, Todd MJ (eds) Optimization. Elsevier, New York, pp 529–572

    Google Scholar 

  • Luǩsan L, Vlček J (2000) Introduction to nonsmooth analysis. Theory and algorithms. Technical Report DMSIA 1/2000, Universita degli Studi di Bergamo

  • Mäkelä MM (2002) Survey of bundle methods for nonsmooth optimization. Optim Methods Softw 17(1):1–29

    Article  MATH  MathSciNet  Google Scholar 

  • Mäkelä MM, Neittaanmäki P (1992) Nonsmooth optimization analysis and algorithms with applications to optimal control. World Scientific, Singapore

    MATH  Google Scholar 

  • Miettinen K, Mäkelä MM, Männikkö T (1998) Optimal control of continuous casting by nondifferentiable multiobjective optimization. Comput Optim Appl 11:177–194

    Article  MATH  MathSciNet  Google Scholar 

  • Mifflin R (1977) Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim 15(6):959–972

    Article  MATH  MathSciNet  Google Scholar 

  • Mijar AR, Arora JS (2000) Review of formulation for elastostatic frictional contact problems. Struct Multidiscipl Optim 20:167–189

    Article  Google Scholar 

  • Munson TS, Facchinei F, Ferris MC, Fischer A, Kanzow C (2001) The semismooth algorithm for large scale complementary problems. INFORMS J Comput 13(4):294–311

    Article  MathSciNet  Google Scholar 

  • Odell IMH, Pakarinen P (2000) The compleat fibre orientation control- and divers effects on paper properties. In: XII. Valmet Paper Technology Days, Turku, pp 20–41

  • Pang JS, Ralph D (1996) Piecewice smoothness, local invertibility, and parametric analysis of normal maps. Math Oper Res 21(2):401–426

    MATH  MathSciNet  Google Scholar 

  • Pang JS, Sun D, Sun J (2003) Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math Oper Res 28(1):39–63

    Google Scholar 

  • Qi L, Sun J (1993) A nonsmooth version of Newton's method. Math Program 58:353–367

    Article  MATH  MathSciNet  Google Scholar 

  • Ralph D, Scholtes S (1996) Sensitivity analysis of composite piecewise smooth equations. Math Program 76:593–612

    Article  MathSciNet  Google Scholar 

  • Robinson S (1995) Sensitivity analysis of variational inequalities by normal-map technique. In: Giannessi F, Maugeri A (eds) Variational inequalities and network equilibrium problems. Plenum Press, pp 257–269

  • Robinson SM (1987) Local structure of feasible sets in nonlinear programming; Part III: stability and sensitivity. Math Program Stud 30:45–66

    MATH  Google Scholar 

  • Robinson SM (1991) An implicit-function theorem for a class of nonsmooth functions. Math Oper Res 16(2):292–309

    Article  MATH  MathSciNet  Google Scholar 

  • Sobieszczanski-Sobieski J, Venter G (2005) Imparting desired attributes in structural design by means of multiobjective optimization. Struct Multidiscipl Optim 29(6):432–444

    Article  Google Scholar 

  • Sun D, Sun J (2002) Semismooth matrix-valued functions. Math Oper Res 27(1):150–169

    Article  MATH  MathSciNet  Google Scholar 

  • Tawhid MA, Gowda MS (2000) On two applications of H-differentiability to optimization and complementarity problems. Comput Optim Appl 17:279–299

    Article  MATH  MathSciNet  Google Scholar 

  • Ulbrich M (2003) Semismooth Newton method for operator equation in function spaces. SIAM J Optim 13(3):805–841

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elina Madetoja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madetoja, E., Mäkelä, M.M. On sensitivity analysis of nonsmooth multidisciplinary optimization problems in engineering process line applications. Struct Multidisc Optim 31, 355–362 (2006). https://doi.org/10.1007/s00158-005-0591-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-005-0591-4

Keywords

Navigation