Advertisement

Structural and Multidisciplinary Optimization

, Volume 28, Issue 2–3, pp 170–179 | Cite as

Analysis and optimum design of fibre-reinforced composite structures

  • G. Kovács
  • A.A. Groenwold
  • K. Jármai
  • J. Farkas
Research paper

Abstract

The optimal design of a carbon-fibre-reinforced plastic (CFRP) sandwich-like structure with aluminium (Al) webs is addressed. The material parameters are determined using tensile tests, whereafter the results of an analytical model, a numerical model and an experimental setup are compared. The analytical and numerical approximations are then used to optimize the structure in a multi-algorithm approach for minimum cost and maximum stiffness. The selected algorithm and approximation are motivated by their accuracy and computational efficiency.

The CFRP plates are optimized with respect to ply arrangement, while the complete sandwich-like structure is optimized with respect to the combination of manufacturing and material cost. Design constraints on maximum deflection of the total structure, buckling of the CFRP composite plates, buckling of the Al webs, stress in the composite plates and stress in the Al stiffeners are included in the formulation. For the different phases in the optimization process, we use the recently proposed particle swarm optimization algorithm, a dynamic search technique and a continuous-discrete optimization technique .

Keywords

carbon fiber reinforced plastic structural optimization finite element model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, H. 1973: Sandwich panels with thick or flexurally stiff faces, Sheet steel in building-Papers and discussion from the meeting, London, 10–18Google Scholar
  2. 2.
    Allen, H. 1996: Sandwich constructions. 3. Proc. 3rd Int. Conf. on Sandwich Constructions. Southampton: EMASGoogle Scholar
  3. 3.
    Bakk, N.; Farkas, J.; Jármai, K. 1996: Static and dynamic tests on aluminium square hollow section members combined with fiber reinforced plastic and rubber layers. Tubular structures VII. Rotterdam-Brookfield: Balkema, 373–379Google Scholar
  4. 4.
    Barbero, E.J. 1999: Introduction to composite materials design. Philadelphia: Taylor & FrancisGoogle Scholar
  5. 5.
    Bolton, H.; Schutte, J.; Groenwold, A. 2000: Multiple parallel local searches in global optimization. In: Dongarra, J.; Kacsuk, P.; Podhorszki, N. (eds.), Recent advances in parallel virtual machine and message passing interface. Lecture notes in computer science1908, [held in Balatonfüred, Hungary, 2000], 88–95Google Scholar
  6. 6.
    Eurocode 3 1992: Design of steel structures. Part 1.1, CEN European Committee for Standardization, BrusselsGoogle Scholar
  7. 7.
    Farkas, J.; Jármai, K. 1997: Analysis and optimum design of metal structures. Rotterdam-Brookfield: BalkemaGoogle Scholar
  8. 8.
    Farkas, J.; Jármai, K. 1998: Minimum material cost design of five-layer sandwich beams. Struct Multidisc Optim15, 215–220Google Scholar
  9. 9.
    Farkas, J.; Jármai, K. 2003: Economic design of metal structures. Rotterdam: MillpressGoogle Scholar
  10. 10.
    Fourie, P.; Groenwold, A. 2002: The particle swarm optimization algorithm in size and shape optimization. Struct Multidisc Optim23, 259–267Google Scholar
  11. 11.
    Geyer, S.; Groenwold, A. 2002: Two hybrid stress membrane finite element families with drilling rotations. Int J Numer Methods Eng53, 583–601Google Scholar
  12. 12.
    Kennedy, J. 1997: The particle swarm: social adaptation of knowledge. Proc. of the International Conference on Evolutionary Computation, IEEE Service Center, Piscataway, NJ, Indianapolis, IN, 303–308Google Scholar
  13. 13.
    Kennedy, J. 2000: Stereotyping: Improving particle swarm performance with cluster analysis. Proc. of the 2000 Congress on Evolutionary Computation, IEEE Service Center, Piscataway, NJ, 1507–1512Google Scholar
  14. 14.
    Kennedy, J.; Eberhart, R. 1995: Particle swarm optimization. Proc. of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, IEEE Service Center, Piscataway, NJ, 4, 1942–1948Google Scholar
  15. 15.
    Kennedy, J.; Spears, W. 1998: Matching algorithms to problems: an experimental test of the particle swarm and some genetics algorithms on the multimodal problem generator. Proc. of the 1998 IEEE International Conference on Evolutionary Computation, 78–83Google Scholar
  16. 16.
    Knox, E.M.; Cowling, M.J. 1998: Adhesively bonded steel corrugated core sandwich construction for marine applications. Mar Struct11(4–5), 185–204Google Scholar
  17. 17.
    Kovacs, Gy. 2004: Analysis and optimal design of fibre reinforced plastic structures. Ph. D. Dissertation, University of Miskolc, HungaryGoogle Scholar
  18. 18.
    Lovbjerg, M.; Rasmussen, T.; Krink, T. 2001: Hybrid particle swarm optimiser with breeding and subpopulations. Proc. of the third Genetic and Evolutionary Computation Conference (GECCO-2001), 469–476Google Scholar
  19. 19.
    Noor, A.K.; Burton, W.S.; Bert, C.W. 1996: Computational models for sandwich panels and shells. Appl Mech Rev49(3), 155–199Google Scholar
  20. 20.
    Olsson, K.A.; Reichard, R.P. (eds.) 1989: Sandwich Constructions. 1. Proc. 1st Int. Conf. on Sandwich Constructions. Stockholm: EMASGoogle Scholar
  21. 21.
    Olsson, K.A. (ed.) 1998: Sandwich Constructions. 4. Proc. 4th Int. Conf. on Sandwich Constructions. Stockholm: EMASGoogle Scholar
  22. 22.
    Rosenbrock, H. 1960: An automatic method for finding the greatest or least value of a function. Comput J3, 175–184Google Scholar
  23. 23.
    Shi, Y.; Eberhart, R. 1998: Parameter selection in particle swarm optimization. In: Porto, V.; Saravanan, N.; Waagen, D.; Eiben, A. (eds.), Evolutionary Programming VII, Lecture Notes in Computer Science 1447, Berlin Heidelberg New York: Springer, 591–600Google Scholar
  24. 24.
    Stamm, K.; Witte, H. 1974: Sandwich-Konstruktionen. Berlin Heidelberg New York: SpringerGoogle Scholar
  25. 25.
    Vinson, J.R. 1999: The behavior of sandwich structures of isotropic and composite materials. Lancaster PA: TechnomicGoogle Scholar
  26. 26.
    Vinson, J.R. 2001: Sandwich structures. Appl Mech Rev54(3), 201–214Google Scholar
  27. 27.
    Weissman-Berman, D.; Olsson, K.A. (eds.) 1992: Sandwich Constructions. 2. Proc. 2nd Int. Conf. on Sandwich Constructions. EMASGoogle Scholar
  28. 28.
    Zenkert, D. 1995: An introduction to sandwich construction. W Midlands: EMASGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • G. Kovács
    • 1
  • A.A. Groenwold
    • 2
  • K. Jármai
    • 1
  • J. Farkas
    • 1
  1. 1.Department of Materials Handling and LogisticsUniversity of MiskolcMiskolc, EgyetemvárosHungary
  2. 2.Department of Mechanical EngineeringUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations