Michell structures formed on surfaces of revolution


The paper formulates the Michell-like problems for surface gridworks. Particular attention is devoted to the problem of designing the lightest fully stressed gridworks formed on surfaces of revolution. In the examples considered, the gridworks are subjected to torsion. Proof is given that the circular meridian is a minimizer of the weight (or volume) functional of a shell subjected to torsion, thus justifying the original Michell conjecture according to which just the spherical twisting shell is the lightest. The proof is based on the methods of the classical variational calculus and thus can be viewed as elementary. This result is confirmed by a direct comparison of the exact formulae for the weight of a spherical Michell shell with the exact formulae for the weights of optimal conical and cylindrical shells with the same fixed boundaries.

This is a preview of subscription content, access via your institution.


  1. 1.

    Allaire, G.; Kohn, R.V. 1993: Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A/Solids12, 839–878

    Google Scholar 

  2. 2.

    Bernadou, M. 1996: Finite element methods for thin shell problems. Chichester: Wiley

  3. 3.

    Chan, H.S.Y. 1967: Half-plane slip-line fields and Michell structures. Q. J. Mech. Appl. Math.20, 453–469

    Google Scholar 

  4. 4.

    Čyras, A. 1972: Optimization theory of perfectly locking bodies. Arch. Mech.24, 203–210

    Google Scholar 

  5. 5.

    Czarnecki, S. 2003: Compliance optimization of the truss structures. Comp. Ass. Mech. Eng. Sci.10, 117–137

    Google Scholar 

  6. 6.

    Dzierżanowski, G.; Lewiński, T. 2003: Layout optimization of two isotropic materials in elastic shells. J. Theor. Appl. Mech.41, 459–472

    Google Scholar 

  7. 7.

    Graczykowski, C.; Lewiński, T. 2003: Optimal Michell’s cantilever transmitting a given point load to a circular support. Analysis of the exact solution. In: Szcześniak, W. (ed.) Theoretical Foundations of Civil Engineering – XI. Polish-Ukrainian Transactions. Warsaw: Oficyna Wydawnicza PW, 351–368

  8. 8.

    Hemp, W.S. 1973: Optimum Structures. Oxford: Clarendon

  9. 9.

    Lewiński, T. 2003: An elementary proof of the Michell sphere being the lightest among all the uniformly stressed shells loaded by two opposite torques. In: Proc. WCSMO-5 Lido di Jesolo, May 2003; CD ROM (6 pages) and Book of Abstracts (2 pages)

  10. 10.

    Lewiński, T.; Telega, J.J. 2000: Plates, laminates and shells. Asymptotic analysis and homogenization. Singapore, New Jersey, London, Hong Kong: World Scientific

  11. 11.

    Lewiński, T.; Telega, J.J. 2001: Michell-like grillages and structures with locking. Arch. Mech.53, 303–331

    Google Scholar 

  12. 12.

    Lewiński, T.; Telega, J.J. 2003: Optimal design of membrane shells. Homogenization-based relaxation of the two-phase layout problem. J. Theor. Appl. Mech.41, 545–560

    Google Scholar 

  13. 13.

    Lewiński, T.; Zhou, M.; Rozvany, G.I.N. 1994: Extended exact solutions for least-weight truss layouts. Part I: Cantilever with a horizontal axis of symmetry. Int. J. Mech. Sci.36, 375–398; Part II: Unsymmetric cantilevers. Int. J. Mech. Sci., 399–419

    Google Scholar 

  14. 14.

    Love, A.E.H. 1888: The small free vibrations and deformation of a thin elastic shell. Phil. Trans. Roy. Soc. London. A179, 491–546

    Google Scholar 

  15. 15.

    Mazurkiewicz, Z.E. 1995: Thin Elastic Shells. Warszawa: Oficyna Wydawnicza PW (in Polish)

  16. 16.

    Michell, A.G.M. 1904: The limits of economy of material in frame structures. Phil. Mag.8, 589–597

    Google Scholar 

  17. 17.

    Novozhilov, V.V. 1970: Thin Shell Theory. Groningen: Walters-Nordhoff

  18. 18.

    Prager, W. 1959: On a problem of optimal design. In: Olszak, W. (ed.) Non-Homogeneity in Elasticity and Plasticity. Symp. IUTAM, Warsaw, 2–9 September 1958. London: Pergamon, pp. 125–132

  19. 19.

    Prager, W.; Shield, R.T. 1967: A general theory of optimal plastic design. J. Appl. Mech., Trans. ASME34, 184–186

    Google Scholar 

  20. 20.

    Rozvany, G.I.N. 1976: Optimal Design of Flexural Systems: Beams, Grillages, Slabs, Plates and Shells. Oxford: Pergamon

  21. 21.

    Rozvany, G.I.N. 1997: Some shortcomings in Michell’s truss theory. Struct. Optim.12, 244–255

    Google Scholar 

  22. 22.

    Strang, G.; Kohn, R.V. 1983: Hencky–Prandtl nets and constrained Michell trusses. Comp. Meth. Appl. Mech. Eng.36, 207–222

    Google Scholar 

  23. 23.

    Telega, J.J.; Jemioło, S. 1998: Macroscopic behaviour of locking materials with microstructure. Part I. Primal and dual locking potential. Relaxation. Bull. Polon. Acad. Sci.; Tech. Sci.46, 265–276

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to T. Lewiński.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lewiński, T. Michell structures formed on surfaces of revolution. Struct Multidisc Optim 28, 20–30 (2004). https://doi.org/10.1007/s00158-004-0419-7

Download citation


  • Michell structures
  • Michell’s sphere