Skip to main content
Log in

Structural optimization complexity: what has Moore’s law done for us?

  • Forum
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Rapid increases in computer processing power, memory and storage space have not eliminated computational cost and time constraints on the use of structural optimization for design. This is due to the constant increase in the required fidelity (and hence complexity) of analysis models. Anecdotal evidence seems to indicate that analysis models of acceptable accuracy have required at least six to eight hours of computer time (an overnight run) throughout the last thirty years. This poses a severe challenge for global optimization or reliability-based design. In this paper, we review how increases in computer power were utilized in structural optimization. We resolve problem complexity into components relating to complexity of analysis model, analysis procedure and optimization methodology. We explore the structural optimization problems that we can solve at present and conclude that we can solve problems with the highest possible complexity in only two of the three components of model, analysis procedure or optimization. We use examples of optimum design of composite structures to guide the discussion due to our familiarity with such problems. However, these are supplemented with other structural optimization examples to illustrate the universality of the message.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adali, S.; Richter, A.; Verijenko, V.E. 1995: Multiobjective Design of laminated Cylindrical Shells for Maximum Pressure and Buckling Load. Microcomputers in Civil Engineering10, 269–279

    Google Scholar 

  2. Antonio, C.A.C. 1999: Optimisation of geometrically non-linear composite structures based on load-displacement control. Composite Struct46, 345–356

    Google Scholar 

  3. Ashley, H. 1982: TOn making things the best – Aeronautical Uses of Optimization. J Aircr19(1), 5–28

    Google Scholar 

  4. Backlund, J.; Ishby, R. 1998: Shape Optimization of holes in composite shear panels. In: Rozvany, G.I.N.; Karihaloo, B.L. (eds.), Structural Optimization. Kluwer Publishers, 9–16

  5. Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. 1996: Meshless methods: An overview and recent developments. Comput Methods Appl Mech Eng139, 3–47

    Google Scholar 

  6. Bennett, J.A.; Botkin, M.E. 1985: Structural Shape Optimization with Geometric Description and Adaptive Mesh Refinement. AIAA J23(3), 458–464

    Google Scholar 

  7. Bennet, J.A.; Botkin, M.E. 1986: The Optimum Shape: Automated Structural Design. General Motors Research Laboratories Symposia Series, New York: Plenum Press

  8. Bondophadhyay, P.K. 1998: Moore’s Law governs the silicon revolution. IEEE86(1), 78–81

    Google Scholar 

  9. Botkin, M.E.; Yang, R.J.; Bennett, J.A. 1986: Shape Optimization of Three Dimensional Stamped and Solid Automotive Components. New York: Plenum Press

  10. Bushnell, D. 1987: PANDA2 – program for minimum weight design of stiffened, composite, locally buckled panels. Comput Struct25(4), 469–605

    Google Scholar 

  11. Butler, R.; Williams, F.W. 1992: Optimum Design Using Viconopt, A buckling and strength constraint program for prismatic assemblies of anisotropic plates. Comput Struct43(4), 699–708

    Google Scholar 

  12. Callahan, K.J.; Weeks, G.E. 1992: Optimum design of composite laminates using genetic algorithms. Comput Struct2(3), 149–160

    Google Scholar 

  13. Chamis, C.C.; Murthy, P.L.N.; Gotsis, P.K.; Mital, S.K. 2000: Telescoping composite mechanics for composite behavior simulation. Comput Methods Appl Mech Eng185(2–4), 399–411

    Google Scholar 

  14. Craig, K.J.; Stander, N.; Doodge, D.A.; Varadappa, S. 2002: Multidisciplinary Design Optimization of Automotive Crashworthiness and NVH Using Response Surface Methods. AIAA Paper No. 2002-5607, Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 4–6 September 2002, Atlanta, Georgia

  15. Crossley, W.A.; Laananen, D.H. 1996: Genetic Algorithm Based Optimal Design of Stiffened panels for Energy Absorption. Proceedings of the American Helicopter Society 52nd Annual Forum. Washington, D.C., June 4–6, pp. 1367–1376

  16. Falzon, B.G.; Steven, G.P.; Xie, Y.M. 1996: Shape optimization of interior cutouts in composite panels. Struct Optim11, 43–49

    Google Scholar 

  17. Fu, W.; Biggers, S.B.; Latour, R.A. 1998: Design optimization of a laminated composite femoral component for hip joint. Thermoplastic Composite Mater11(2), 99–112

    Google Scholar 

  18. Furuya, H.; Haftka, R.T. 1995: Placing Actuators on Space Structures by Genetic Algorithms and Effectiveness Indices. Struct Optim9, 69–75

    Google Scholar 

  19. Graesser, D.L.; Zabinsky, Z.B.; Tuttle, M.; Kim, G.I. 1993: Optimal design of a composite structure, Composite Struct24, 273–281

  20. Grandhi, R. 1993: Structural Optimization with Frequency Constraints – A Review. AIAA J31(12), 2296–2303

    Google Scholar 

  21. Groenwold, A.A.; Snyman, J.A.; Stander, N. 1996: Modified Trajectory Method for Practical Global Optimization Problems. AIAA J34(10), 2126–2131

    Google Scholar 

  22. Grosset, L.; Venkataraman, S.; Haftka, R.T.; Rastogi, N. 2001: Genetic optimization of two-material composite laminates. Proceeding of the American Society for Composites 16th Technical Conference, September 9–12, Blacksburg, Virginia, USA

  23. Grindeanu, I.; Kim, N.H.; Choi, K.K.; Chen, J.S., to appear, 2002: CAD-based shape optimization using a meshfree method. Concurrent Eng: Res Appl, 10(1), 55–66

    Google Scholar 

  24. Gurdal, Z.; Haftka, R.T. 1988: Automated Design of Composite Plates for Improved Damage Tolerance, Composite Materials: testing and Design (Eighth Conference). ASTM STP 972, Whitcomb, J.D. (ed.), American Society for Testing and Materials, Philadelphia, pp. 5–22

  25. Gurdal, Z.; Haftka, R.T.; Hajela, P. 1998: Design and Optimization of Laminated Composite Structures. New York: Wiley

  26. Ha, S.K.; Jeong, J.Y. 1996: Design Optimization of Hip Prosthesis of Thick Laminated Composites by Developing Finite Element Method and Sensitivity Analysis. KSME J10(1), 1–11

    Google Scholar 

  27. Haftka, R.T.; Starnes, J.H. 1976: Applications of a quadratic extended interior penalty function for structural optimization. AIAA J14(6), 718–724

    Google Scholar 

  28. Haftka, R.T.; Starnes, J.H. Jr. 1988: Stiffness tailoring for Improved Compressive Strength of composite plates with Holes. AIAA J26(1), 72–77

    Google Scholar 

  29. Hajela, P.; Shih, C.-J. 1989: Optimal Design of Laminated Composites Using a Modified Mixed Integer and Discrete Programming Algorithm. Comput Struct32(1), 213–221

    Google Scholar 

  30. Hammer, V.B. 2000: Optimization of fibrous laminates undergoing progressive damage. Numer Methods Eng48, 1265–1284

    Google Scholar 

  31. Hyer, M.W.; Charette, R.F. 1991: Use of curvilinear fiber format in composite structural design. AIAA J29, 1011–1015

    Google Scholar 

  32. Hu, H.T.; Wang, S.S. 1992: Optimization for buckling resistance of fiber composite laminate shells with and without cutouts. Composite Struct22, 3–13

    Google Scholar 

  33. Jaunky, N.; Knight, N.F. Jr.; Ambur, D.R. 1998: Optimal design of general stiffened composite circular cylinders for global buckling with strength constraints. Composite Struct41, 243–252

    Google Scholar 

  34. Jegley, D.C.; Bush, H.G.; Lovejoy, A.E. 1999: Structural Response and Failure of a Full Scale Stiched Graphite Epoxy Wing. AIAA Paper No. 2001-1334 Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, April 16–19, 2001, Seatlle, Washington

  35. Kassapogolou, C. 1997: Simultaneous cost and weight minimization of composite-stiffened panels under compress and shear. Composites – Part A28A, 419–435

    Google Scholar 

  36. Kassapogolou, C.; Dobyns, A.L. 2001: Simultaneous cost and weight minimization of postbuckled composite panels under combined compression and shear. Struct Multidisc Optim21, 372–382

    Google Scholar 

  37. Katz, Y.; Haftka, R.T.; Altus, E. 1989: Optimization of fiber directions for increasing the failure load of a plate with a hole. Proceedings of the ASC 4th Technical Conference on Composite Materials, October 3–5, Blacksburg, Virginia, pp. 62–71

  38. Khot, N.S.; Venkaya, V.B.; Berke, L. 1999: Optimum Design of Composite Structures with Stress and Displacement Constraints. AIAA14(2), 131–132

    Google Scholar 

  39. Kim, N.H.; Choi, K.K.; Botkin, M.E. 2003: Numerical method for shape optimization using meshfree method. Struct Multidisc Optim2(6), 418–429

    Google Scholar 

  40. Kim, N.H.; Choi, K.K.; Chen, J.S. 2001: Die Shape Optimization of Sheet Metal Stamping Process Using Meshfree Method. Numer Methods Eng51, 1385–1405

    Google Scholar 

  41. Kim, S.J.; Goo, N.S. 1999: Optimal design of laminated composite plates in a fuzzy environment. AIAA J31(3), 578–583

    Google Scholar 

  42. Kogiso, N.; Shao, S.; Murotsu, Y. 1997: TReliability-based optimum design of symmetric laminated plate subject to buckling. Struct Optim14, 184–192

    Google Scholar 

  43. Lamberti, L.; Venkataraman, S.; Haftka, R.T.; Johnson, T.F. 2000: Comparison of Preliminary Designs of Stiffened Panels Optimized Using PANDA2 for Reusable Launch Vehicle Propellant Tanks. AIAA Paper No. 2000-1657, Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Atlanta, Georgia, USA

  44. Lamberti, L.; Venkataraman, S.; Haftka, R.T.; Johnson, T.F. 2002: Preliminary Design optimization of Stiffened Panels Using Approximate Analysis Models. Int J Numer Methods Eng57, 2003, 1351–1380

    Google Scholar 

  45. Lecina, A.; Petiau, C. 1987: Advances in optimal design with composite materials. Computer Aided Optimal Design: Structural and Mechanical Systems,NATO ASI Series, Vol F27, edited by Mota Soares, C.A., Berlin Heidelberg New York: Springer, pp. 943–953

  46. Lee, S.J.; Hinton, S.J. 2000: Dangers inherited in shells optimized with linear assumptions. Comput Struct78, 473–486

    Google Scholar 

  47. LeRiche, R.; Haftka, R.T. 1995: Improved genetic Algorithm for Minimum Thickness Composite Laminate Design. Composites Eng5(2), 143–161

    Google Scholar 

  48. LeRiche, R.; Gaudin, J. 1998: Design of dimensionally stable composites by evolutionary optimization. Composite Struct41, 97–111

    Google Scholar 

  49. Levy, R.; Lev, O.E. 1987: Recent Developments in Structural Optimization. Struct Eng113(9), 1939–1962

    Google Scholar 

  50. Ley, R.; Peltier, A. 2001: Optimal sizing of a composite sandwich fuselage component. Vehicle Des25(1–2), 89–114

    Google Scholar 

  51. Lombardi, M.; Haftka, R.T. 1998: Anti-optimization technique for structural design under load uncertainties. Comput Methods Appl Mech Eng157(1–2) , 19–31

    Google Scholar 

  52. Mabson, G.E.; Flynn, B.W.; Ilcewiz, L.B.; Graesser, D.L. 1994: The Use of COSTADE in developing commercial aircraft fuselage structures. AIAA-94-1492, Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and materials Conference, April 18–20, Hilton Head, South Carolina, 1384–1393

  53. Mesquita, L.; Kamat, M.P. 1987: Optimization of Stiffened laminated Composite Plates with Frequency Constraints. Eng Optim11, 77–88

    Google Scholar 

  54. Miki, M.; Sugiyama, Y. 1993: Optimum Design of Laminated Composite Plates using Lamination Parameters. AIAA J31(5), 921–922

    Google Scholar 

  55. Miki, M.; Murotsu, Y.; Murayama, N.; Tanaka, T. 1993: Application of Lamination Parameters to Reliability-Based Stiffness Design of Composites. AIAA31(10), 1938–1945

    Google Scholar 

  56. Moita, J.S.; Barbosa, J.I.; Mota Soares, C.M.; Mota Soares, C.A. 2000: Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells. Comput Struct76, 407–420

    Google Scholar 

  57. Moore, G.E. 1999: Cramming more components onto integrated circuits. Electronics38(8), 114–117

    Google Scholar 

  58. Nagendra, S.; Jestin, D.; Gurdal, Z.; Haftka, R.T.; Wat-son, L.T. 1996: Improved Genetic Algorithm for the Design of Stiffened Composite Panels. Comput Struct58(3), 543–555

    Google Scholar 

  59. Niordson, F.I. 2001: Early numerical computations in engineering. Appl Mech Rev54(6), R17–R19

    Google Scholar 

  60. Olhoff, N. 1996: On Optimum Design of Structures and Materials. Meccanica31, 143–161

    Google Scholar 

  61. Parkinson, C.N. 1959: Parkinson’s Law or the pursuit of progress. London: John Murray

  62. Perry, C.A.; Gurdal, Z.; Starnes, J.H. 1997: Minimum Weight Design of Compressively Loaded Stiffened Panels for Post buckling Response. Eng Optim28, 175–197

    Google Scholar 

  63. Qu, X.; Venkataraman, S.; Haftka, R.T.; Johnson, T.F. 2003: Deterministic and reliability based optimization of composite laminates for cryogenic environments. AIAA J41(10), 2029–2036

    Google Scholar 

  64. Renton, W.J. 2001: Aerospace and structures, where are we headed? Int J Solids Struct38, 3309–3319

    Google Scholar 

  65. Saravanos, D.A.; Chamis, C.C. 1992: Multiobjective shape and material optimization of composite structures including damping. AIAA J30(3), 805–813

    Google Scholar 

  66. Sargent, P.M.; Ige, D.O.; Ball, N.R. 1995: Design of Laminate Composite Layups using Genetic Algorithms. Eng Comput11, 59–69

    Google Scholar 

  67. Schaller, R.J. 1997: Moore’s Law: past, present and future. IEEE Spectrum, June 1997, 53–59

  68. Schmit, L.A.; Farshi, B. 1977: Optimum design of laminated fibre composite plates. Int J Numer Methods Eng11, 623–640

    Google Scholar 

  69. Schmit, L.A.; Miura, H. 1976: A New Structural Analysis/Synthesis Capability – ACCESS 1. AIAA J14(5), 661–671

    Google Scholar 

  70. Shin, D.K.; Gurdal, Z.; Griffin, O.H. Jr. 1991: Minimum weight design of laminated composite plates for post buckling performance. Appl Mech Rev44(11), part 2, 219–231

    Google Scholar 

  71. Sobieszczanski-Sobieski, J. 1986: Structural optimization: challenges and opportunities. Vehicle Des7(3–4), 242–263

    Google Scholar 

  72. Sobieszczanski-Sobieski, J.; Haftka, R.T. 1997: Multidisciplinary aerospace design optimization: Survey of recent developments. Struct Optim14, 1–23

    Google Scholar 

  73. Sobieszczanski-Sobieski, J.; Kodiyalam, S.; Yang, R.J. 2001: Optimization of car body under constraints of noise, vibration and harshness (NVH) and crash. Struct Multidisc Optim22, 295–306

    Google Scholar 

  74. Starnes, J.H. Jr.; Haftka, R.T. 1979: Preliminary Design of Composite Wings for Buckling, Strength, and Displacement Constraints. J Aircr16(8), 564–570

    Google Scholar 

  75. Stroud, J.W.; Agranoff, N. 1976: Minimum Mass design of Filamentary Composite Panels Under Combined Loads: Design Procedure Based on Simplified Equations, NASA-TN-D-8257, Washington, D.C.

  76. Stroud, J.W.; Agranoff, N. 1977: Minimum Mass design of Filamentary Composite Panels Under Combined Loads: Design Procedure Based on a Rigorous Buckling Analysis, NASA-TN-D-8257, Washington, D.C.

  77. Stroud, W.J.; Anderson, M.S. 1981: PASCO: Structural Panel Analysis and Sizing Code, Capability and Analytical Foundations, NASA-TM-80181, Washington, D.C.

  78. Thimbleby, H. 1993: Computerized Parkinson’s Law. Comput Control Eng4(5), 197–198

  79. van Bloemen Waanders, B.; Eldered, M.; Guinta, A.; Reese, G.; Bhardwaj, M.; Fulcher, C. 2001: AIAA-2001-1625, Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, April 16–19, 2001, Seattle, Washington

  80. Vanderplaats, G.N. 1982: Structural Optimization – Past, Present and Future. AIAA J20(7), 992–1000

    Google Scholar 

  81. Vanderplaats, G.N. 1993: Thirty years of modern structural optimization. Adv Eng Softw16, 81–88

    Google Scholar 

  82. Vanderplaats, G.N. 2002: Very Large Scale Optimization. NASA/CR-2002-211768, Washington, D.C.

  83. Venkaya, V.B. 1978: Structural Optimization – Review and Some Recommendations. Numer Methods Eng13(2), 203–228

    Google Scholar 

  84. Venter, G.; Haftka, R.T. 2000: Two-Species Genetic Algorithm for Design under Worst Case Conditions. Evol Optim (Internet J)2(1), 1–19

  85. Walsh, J.L.; Weston, R.P.; Samareh, J.A.; Mason, B.H.; Green, L.L.; Bierdon, R.T. 2000: Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles, Part 2: Preliminary Results. AIAA-2000-0419, Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, 10–13 January 2000, Reno, Nevada, USA

  86. Walsh, J.L.; Weston, R.P.; Samareh, J.A.; Mason, B.H.; Green, L.L.; Bierdon, R.T. 1999: Cryogenic tank structure sizing with structural optimization method. AIAA-2001-1599, Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Seattle Washington, 2001

  87. Wellen, H.; Bartholomew, P. 1987: Structural Optimization in Aircraft Construction, Computer Aided Optimal Design: Structural and Mechanical Systems NATO ASI Series, Vol. F27, edited by Mota Soares, C.A., Berlin Heidelberg New York: Springer, pp. 955–970

  88. Yu, M.; Pochtman, L.; Derevyanko, L.V.; Mormul, N.F. 1990: Multicriterial Optimization of Hybrid Composite Cylindrical Shells Under a Stochastic Combined laoding. Mech Composite Mater26(6), 801–806

    Google Scholar 

  89. Yang, L.; Ma, Z.K. 1965: Optimum Design Based on Reliability for a Composite Structural System. Comput Struct36(5), 785–790

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venkataraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkataraman, S., Haftka, R. Structural optimization complexity: what has Moore’s law done for us?. Struct Multidisc Optim 28, 375–387 (2004). https://doi.org/10.1007/s00158-004-0415-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-004-0415-y

Keywords

Navigation