Design optimization of a pedaling mechanism for paraplegics

Abstract

The design optimization of a pedaling mechanism for use by paraplegic persons through functional electric stimulation of paralyzed muscles is described. The objective of the optimization is to enable paraplegics to pedal by use of the limited number of leg muscles accessible to surface stimulation. This is obtained by optimization of a four-bar pedaling mechanism with no “dead points”. As a beneficial side effect of the optimization, an indication of the best stimulation pattern for the muscles is obtained. A prototype of the mechanism is built, and its attractive behavior is explained. It is concluded that the mechanism has indisputable advantages compared with conventional cranks. The next step will be experimental verification with fit people and subsequently with paraplegics.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    An, K.N.; Kwak, B.M.; Chao, E.Y.; Morrey, B.F. 1984: Determination of muscle and joint forces: a new technique to solve the indeterminate problem. J. Biomech. Eng. 106, 364–367

    Google Scholar 

  2. 2.

    Angeli, T.; Gföhler, M.; Eberharter, T.; Lugner, P.; Rinder, L. 2001: Optimiziation of the pedal path for cycling powered by lower extremity muscles activated by functional electrostimulation, FES. Comput. Methods Biomech. Biomed. Eng. 3, 263–268

    Google Scholar 

  3. 3.

    Angeli, T.; Gföhler, M.; Eberharter, T.; Rinder, L. 1999: Tricycle for paraplegics using functional electrostimulation. Med. Biol. Eng. Comput. 37(supp. 2) , 326–327

    Google Scholar 

  4. 4.

    Bean, J.C.; Chaffin, D.B.; Schultz, A.B. 1988: Biomechanical model calculation of muscle contraction forces: a double linear programming method. J. Biomech. 21, 59–66

    Google Scholar 

  5. 5.

    Chen, J.J.; Yu, N.Y.; Huang, D.G.; Ann, B.T.; Chang, G.C. 1997: Applying fuzzy logic to control cycling movement induced by functional electrical stimulation. IEEE Trans. Rehabil. Eng. 5, 158–169

    Google Scholar 

  6. 6.

    Dul, J.; Johnson, G.E.; Shiavi, R.; Townsend, M.A. 1984: Muscular synergism-II. a minimum fatigue criterion for load sharing between synergistic muscles. J. Biomech. 17, 675–684

    Google Scholar 

  7. 7.

    Durfee, W.K.; Palmer, K.I. 1994: Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle. IEEE Trans. Biomed. Eng. 41, 205–216

    Google Scholar 

  8. 8.

    Gföhler, M.; Angeli, T.; Eberharter, T.; Lugner, P. 1999: Dynamic simulation of cycling powered by lower extremity muscles activated by functional electrical stimulation. In: Högfors, C. (ed.): Proceedings of the XIIth Biomechanics Seminar (held in Gothenburg). New York, Oxford: Oxford University Press

  9. 9.

    Gföhler, M.; Angeli, T.; Eberharter, T.; Lugner, P.; Mayr, W.; Hofer, C. 2001: Test bed with force measuring crank for static and dynamic investigations on cycling by means of functional electrical stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 9, 169–180

    Google Scholar 

  10. 10.

    Gföhler, M.; Lugner, P. 2000: Cycling by means of functional electrical stimulation. IEEE Trans. Rehab. Eng. TRE 8, 233–243

    Google Scholar 

  11. 11.

    Glaser, R.M.; Couch, W.P.; Janssen, T.W.J.; Almeyda, J.W.; Pringle, D.D.; Collins, S.R.; Mathews, T. 1996: A development system to enhance FES leg cycle ergometer technology. RESNA ’96 9, 279–281

  12. 12.

    Haftka, R.T. 1985: Sensitivity calculations for iteratively solved problems. Int. J. Numer. Methods Eng. 21, 1535–1546

    Google Scholar 

  13. 13.

    Hill, A.V. 1938: The heat of shortening and the dynamics constants of muscle. Proc. Roy. Soc. B. 126, 136–195

    Google Scholar 

  14. 14.

    Janssen, T.W.J.; Glaser, R.M.; Shuster, D.B. 1998: Clinical efficacy of electrical stimulation exercise training: Effects on health, fitness, and function. Top Spinal Cord Injury Rehabil. 3, 33–49

    Google Scholar 

  15. 15.

    Malagodi, M.S.; Ferguson-Pell, M.W.; Masiello, R.D. 1993: A functional electrical stimulation exercise system designed to increase bone density in spinal cord injured individuals. IEEE Trans. Rehabil. Eng. 1, 213–219

    Google Scholar 

  16. 16.

    Ragnarsson, K.T.; Pollack, S.; O’Daniel, W.; Edgar, R.; Petrofsky, J.; Nash, M.S. 1988: Clinical evaluation of computerized functional electrical stimulation after spinal cord injury: a multicenter pilot study. Arch. Phys. Med. Rehabil. 69, 672–677

    Google Scholar 

  17. 17.

    Rasmussen, J.; Damsgaard, M.; Christensen, S.T.; Surma, E. 2002: Design optimization with respect to ergonomic properties, structural and multidisciplibary optimization. Struct. Multidisc. Optim. 24(2), 89–97

    Google Scholar 

  18. 18.

    Rasmussen, J.; Damsgaard, M.; Voigt, M. 2000: Muscle recruitment by the min/max criterion – a comparative numerical study. J. Biomech. 34, 409–415

    Google Scholar 

  19. 19.

    Schutte, L.M.; Rodgers, M.M.; Zajac, F.E.; Glaser, R.M. 1993: Improving the efficacy of electrical stimulation-induced leg cycle ergometry. An analysis based on a dynamic musculoskeletal model. IEEE Trans. Rehabil. Eng. 1, 109–125

    Google Scholar 

  20. 20.

    Solomonow, M. 1984: External control of the neuromuscular system. IEEE Trans. Biomed. Eng. 31, 752–763

    Google Scholar 

  21. 21.

    Stein, R.B.; Momose, K.; Bobet, J. 1999: Biomechanics of human quadriceps muscles during electrical stimulation. J. Biomech. 32, 347–357

    Google Scholar 

  22. 22.

    Stein, R.B.; Peckham, P.H.; Popovic, D.P. (eds.) 1992: Neural prostheses. Replacing motor function after disease or disability. In: Högfors, C. (ed.): Proceedings of the XIIth Biomechanics Seminar (held in Gothenburg). New York, Oxford: Oxford University Press

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Rasmussen .

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rasmussen , J., Christensen , S., Gföhler , M. et al. Design optimization of a pedaling mechanism for paraplegics. Struct Multidisc Optim 26, 132–138 (2004). https://doi.org/10.1007/s00158-003-0324-5

Download citation

Keywords

  • inverse dynamics
  • biomechanics
  • rehabilitation
  • paraplegics
  • ergonomic optimization