Advertisement

Design optimization of a pedaling mechanism for paraplegics

  • J. Rasmussen
  • S.T. Christensen
  • M. Gföhler
  • M. Damsgaard
  • T. Angeli
Industrial applications and design case study

Abstract

The design optimization of a pedaling mechanism for use by paraplegic persons through functional electric stimulation of paralyzed muscles is described. The objective of the optimization is to enable paraplegics to pedal by use of the limited number of leg muscles accessible to surface stimulation. This is obtained by optimization of a four-bar pedaling mechanism with no “dead points”. As a beneficial side effect of the optimization, an indication of the best stimulation pattern for the muscles is obtained. A prototype of the mechanism is built, and its attractive behavior is explained. It is concluded that the mechanism has indisputable advantages compared with conventional cranks. The next step will be experimental verification with fit people and subsequently with paraplegics.

Keywords

inverse dynamics biomechanics rehabilitation paraplegics ergonomic optimization  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, K.N.; Kwak, B.M.; Chao, E.Y.; Morrey, B.F. 1984: Determination of muscle and joint forces: a new technique to solve the indeterminate problem. J. Biomech. Eng. 106, 364–367Google Scholar
  2. 2.
    Angeli, T.; Gföhler, M.; Eberharter, T.; Lugner, P.; Rinder, L. 2001: Optimiziation of the pedal path for cycling powered by lower extremity muscles activated by functional electrostimulation, FES. Comput. Methods Biomech. Biomed. Eng. 3, 263–268 Google Scholar
  3. 3.
    Angeli, T.; Gföhler, M.; Eberharter, T.; Rinder, L. 1999: Tricycle for paraplegics using functional electrostimulation. Med. Biol. Eng. Comput. 37(supp. 2) , 326–327 Google Scholar
  4. 4.
    Bean, J.C.; Chaffin, D.B.; Schultz, A.B. 1988: Biomechanical model calculation of muscle contraction forces: a double linear programming method. J. Biomech. 21, 59–66 Google Scholar
  5. 5.
    Chen, J.J.; Yu, N.Y.; Huang, D.G.; Ann, B.T.; Chang, G.C. 1997: Applying fuzzy logic to control cycling movement induced by functional electrical stimulation. IEEE Trans. Rehabil. Eng. 5, 158–169 Google Scholar
  6. 6.
    Dul, J.; Johnson, G.E.; Shiavi, R.; Townsend, M.A. 1984: Muscular synergism-II. a minimum fatigue criterion for load sharing between synergistic muscles. J. Biomech. 17, 675–684 Google Scholar
  7. 7.
    Durfee, W.K.; Palmer, K.I. 1994: Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle. IEEE Trans. Biomed. Eng. 41, 205–216 Google Scholar
  8. 8.
    Gföhler, M.; Angeli, T.; Eberharter, T.; Lugner, P. 1999: Dynamic simulation of cycling powered by lower extremity muscles activated by functional electrical stimulation. In: Högfors, C. (ed.): Proceedings of the XIIth Biomechanics Seminar (held in Gothenburg). New York, Oxford: Oxford University Press Google Scholar
  9. 9.
    Gföhler, M.; Angeli, T.; Eberharter, T.; Lugner, P.; Mayr, W.; Hofer, C. 2001: Test bed with force measuring crank for static and dynamic investigations on cycling by means of functional electrical stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 9, 169–180 Google Scholar
  10. 10.
    Gföhler, M.; Lugner, P. 2000: Cycling by means of functional electrical stimulation. IEEE Trans. Rehab. Eng. TRE 8, 233–243 Google Scholar
  11. 11.
    Glaser, R.M.; Couch, W.P.; Janssen, T.W.J.; Almeyda, J.W.; Pringle, D.D.; Collins, S.R.; Mathews, T. 1996: A development system to enhance FES leg cycle ergometer technology. RESNA ’96 9, 279–281Google Scholar
  12. 12.
    Haftka, R.T. 1985: Sensitivity calculations for iteratively solved problems. Int. J. Numer. Methods Eng. 21, 1535–1546 Google Scholar
  13. 13.
    Hill, A.V. 1938: The heat of shortening and the dynamics constants of muscle. Proc. Roy. Soc. B. 126, 136–195 Google Scholar
  14. 14.
    Janssen, T.W.J.; Glaser, R.M.; Shuster, D.B. 1998: Clinical efficacy of electrical stimulation exercise training: Effects on health, fitness, and function. Top Spinal Cord Injury Rehabil. 3, 33–49 Google Scholar
  15. 15.
    Malagodi, M.S.; Ferguson-Pell, M.W.; Masiello, R.D. 1993: A functional electrical stimulation exercise system designed to increase bone density in spinal cord injured individuals. IEEE Trans. Rehabil. Eng. 1, 213–219 Google Scholar
  16. 16.
    Ragnarsson, K.T.; Pollack, S.; O’Daniel, W.; Edgar, R.; Petrofsky, J.; Nash, M.S. 1988: Clinical evaluation of computerized functional electrical stimulation after spinal cord injury: a multicenter pilot study. Arch. Phys. Med. Rehabil. 69, 672–677 Google Scholar
  17. 17.
    Rasmussen, J.; Damsgaard, M.; Christensen, S.T.; Surma, E. 2002: Design optimization with respect to ergonomic properties, structural and multidisciplibary optimization. Struct. Multidisc. Optim. 24(2), 89–97 Google Scholar
  18. 18.
    Rasmussen, J.; Damsgaard, M.; Voigt, M. 2000: Muscle recruitment by the min/max criterion – a comparative numerical study. J. Biomech. 34, 409–415 Google Scholar
  19. 19.
    Schutte, L.M.; Rodgers, M.M.; Zajac, F.E.; Glaser, R.M. 1993: Improving the efficacy of electrical stimulation-induced leg cycle ergometry. An analysis based on a dynamic musculoskeletal model. IEEE Trans. Rehabil. Eng. 1, 109–125 Google Scholar
  20. 20.
    Solomonow, M. 1984: External control of the neuromuscular system. IEEE Trans. Biomed. Eng. 31, 752–763 Google Scholar
  21. 21.
    Stein, R.B.; Momose, K.; Bobet, J. 1999: Biomechanics of human quadriceps muscles during electrical stimulation. J. Biomech. 32, 347–357 Google Scholar
  22. 22.
    Stein, R.B.; Peckham, P.H.; Popovic, D.P. (eds.) 1992: Neural prostheses. Replacing motor function after disease or disability. In: Högfors, C. (ed.): Proceedings of the XIIth Biomechanics Seminar (held in Gothenburg). New York, Oxford: Oxford University PressGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • J. Rasmussen
    • 2
  • S.T. Christensen
    • 2
  • M. Gföhler
    • 1
  • M. Damsgaard
    • 2
  • T. Angeli
    • 1
  1. 1.Dept. of Machine Elements and Machine DesignVienna University of TechnologyViennaAustria
  2. 2.Institute of Mechanical EngineeringAalborg UniversityAalborg OstDenmark

Personalised recommendations