Skip to main content

Advertisement

SpringerLink
Degrees of bi-embeddable categoricity of equivalence structures
Download PDF
Download PDF
  • Open Access
  • Published: 01 November 2018

Degrees of bi-embeddable categoricity of equivalence structures

  • Nikolay Bazhenov1,2,
  • Ekaterina Fokina3,
  • Dino Rossegger  ORCID: orcid.org/0000-0003-3494-90493 &
  • …
  • Luca San Mauro3 

Archive for Mathematical Logic volume 58, pages 543–563 (2019)Cite this article

  • 281 Accesses

  • 6 Citations

  • Metrics details

Abstract

We study the algorithmic complexity of embeddings between bi-embeddable equivalence structures. We define the notions of computable bi-embeddable categoricity, (relative) \(\Delta ^0_\alpha \) bi-embeddable categoricity, and degrees of bi-embeddable categoricity. These notions mirror the classical notions used to study the complexity of isomorphisms between structures. We show that the notions of \(\Delta ^0_\alpha \) bi-embeddable categoricity and relative \(\Delta ^0_\alpha \) bi-embeddable categoricity coincide for equivalence structures for \(\alpha =1,2,3\). We also prove that computable equivalence structures have degree of bi-embeddable categoricity \(\mathbf {0},\mathbf {0}'\), or \(\mathbf {0}''\). We furthermore obtain results on the index set complexity of computable equivalence structure with respect to bi-embeddability.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 248(950), 407–432 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  2. Maltsev, A.I.: On recursive Abelian groups. In: Soviet Mathematics, vol. 3. Doklady (1962)

  3. Fokina, E., Harizanov, V., Melnikov, A.G.: Computable model theory. Turing’s legacy: developments from Turing’s ideas in logic 42, 124–191 (2014)

  4. Montalbán, A.: Up to equimorphism, hyperarithmetic is recursive. J. Symb. Log. 70, 360–378 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Montalbán, A.: On the equimorphism types of linear orderings. Bull. Symb. Log. 13, 71–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Greenberg, N., Montalbán, A.: Ranked structures and arithmetic transfinite recursion. Trans. Am. Math. Soc. 360(3), 1265–1307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fokina, E., Rossegger, D., Mauro, L.S.: Bi-embeddability spectra and bases of spectra. arXiv preprint arXiv:1808.05451 (2018)

  8. Robert, I.S.: Turing Computability. Theory and Applications of Computability. Springer, Berlin Heidelberg (2016)

    MATH  Google Scholar 

  9. Calvert, W., Cenzer, D., Harizanov, V., Morozov, A.: Effective categoricity of equivalence structures. Ann. Pure Appl. Log. 141, 61–78 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fokina, E., Kalimullin, I.S., Miller, R.: Degrees of categoricity of computable structures. Arch. Math. Log. 49(1), 51–67 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Russell, M.: D-computable categoricity for algebraic fields. J. Symb. Log. 74(12), 1325–1351 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Fokina, E., Frolov, A., Kalimullin, I.S.: Categoricity spectra for rigid structures. Notre Dame J. Form. Log. 57(1), 45–57 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Csima, B.F., Franklin, J.N.Y., Shore, R.A.: Degrees of categoricity and the hyperarithmetic hierarchy. Notre Dame J. Form. Log. 54(2), 215–231 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Csima, B.F., Stephenson, J.: Finite computable dimension and degrees of categoricity. Annals of Pure and Applied Logic (2018)

  15. Bazhenov, N.A., Kalimullin, I.S., Yamaleev, M.M.: Degrees of categoricity vs. strong degrees of categoricity. Algebra Log. 55(2), 173–177 (2016)

    Article  MATH  Google Scholar 

  16. Bazhenov, N.A., Kalimullin, I.S., Yamaleev, M.M.: Degrees of categoricity and spectral dimension. J. Symb. Log. 83(1), 103–116 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kach, A.M., Turetsky, D.: \({\Delta ^{0}}_2\)-categoricity of equivalence structures. N. Z. J. Math. 39, 143–149 (2009)

    MATH  Google Scholar 

  18. Downey, R.G., Melnikov, A.G., Meng Ng, K.: On \({\Delta ^{0}}_2\)-categoricity of equivalence relations. Ann. Pure Appl. Log. 166(9), 851–880 (2015)

    Article  MATH  Google Scholar 

  19. Rodney, G.D., Asher, M.K., Turetsky, D.: Limitwise monotonic functions and their applications. In: Proceedings Of The 11Th Asian Logic Conference, pp. 59–85 (2011)

Download references

Acknowledgements

Open access funding provided by Austrian Science Fund (FWF). The first author was supported by the Russian Foundation for Basic Research, according to the research Project No. 16-31-60058 mol_a_dk. The second, third and fourth author were supported by the Austrian Science Fund FWF through project P 27527.

Author information

Authors and Affiliations

  1. Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., Novosibirsk, Russia, 630090

    Nikolay Bazhenov

  2. Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia, 630090

    Nikolay Bazhenov

  3. Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8–10, 1040, Wien, Austria

    Ekaterina Fokina, Dino Rossegger & Luca San Mauro

Authors
  1. Nikolay Bazhenov
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ekaterina Fokina
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Dino Rossegger
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Luca San Mauro
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Dino Rossegger.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, N., Fokina, E., Rossegger, D. et al. Degrees of bi-embeddable categoricity of equivalence structures. Arch. Math. Logic 58, 543–563 (2019). https://doi.org/10.1007/s00153-018-0650-3

Download citation

  • Received: 06 March 2018

  • Accepted: 24 October 2018

  • Published: 01 November 2018

  • Issue Date: 01 August 2019

  • DOI: https://doi.org/10.1007/s00153-018-0650-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Computable categoricity
  • Bi-embeddability
  • Degrees of categoricity
  • Degrees of bi-embeddable categoricity

Mathematics Subject Classification

  • 03C57
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.