Advertisement

Maehara-style modal nested calculi

  • Roman Kuznets
  • Lutz Straßburger
Open Access
Article
  • 126 Downloads

Abstract

We develop multi-conclusion nested sequent calculi for the fifteen logics of the intuitionistic modal cube between IK and IS5. The proof of cut-free completeness for all logics is provided both syntactically via a Maehara-style translation and semantically by constructing an infinite birelational countermodel from a failed proof search. Interestingly, the Maehara-style translation for proving soundness syntactically fails due to the hierarchical structure of nested sequents. Consequently, we only provide the semantic proof of soundness. The countermodel construction used to prove completeness required a completely novel approach to deal with two independent sources of non-termination in the proof search present in the case of transitive and Euclidean logics.

Keywords

Proof theory Sequent calculus Nested sequents Modal logic Intuitionistic logic Cut elimination Multiple conclusion Intuitionistic modal logic 

Mathematics Subject Classification

03B45 03B60 03B62 03B70 03F03 03F05 03F07 03F55 

Notes

Acknowledgements

Open access funding provided by Austrian Science Fund (FWF). We would like to thank the anonymous reviewer for useful comments.

References

  1. 1.
    von Plato, J.: Saved from the Cellar: Gerhard Gentzen’s Shorthand Notes on Logic and Foundations of Mathematics. Sources and Studies in the History of Mathematics and Physical Sciences. Springer (2017).  https://doi.org/10.1007/978-3-319-42120-9
  2. 2.
    Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 39(1), 176–210 (1935).  https://doi.org/10.1007/BF01201353 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Maehara, S.: Eine Darstellung der intuitionistischen Logik in der klassischen. Nagoya Math. J. 7, 45–64 (1954).  https://doi.org/10.1017/S0027763000018055 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dyckhoff, R.: Intuitionistic decision procedures since Gentzen. In: Advances in Proof Theory, volume 28 of Progress in Computer Science and Applied Logic, pp. 245–267. Springer (2016).  https://doi.org/10.1007/978-3-319-29198-7_6
  5. 5.
    Fitting, M.C.: Intuitionistic Logic, Model Theory and Forcing, volume 54 of Studies in Logic and the Foundations of Mathematics. North-Holland (1969). http://www.sciencedirect.com/science/bookseries/0049237X/54
  6. 6.
    Beth, E.W.: The Foundations of Mathematics: A Study in the Philosophy of Science, volume 25 of Studies in Logic and the Foundations of Mathematics. Harper & Row (1959). http://www.sciencedirect.com/science/bookseries/0049237X/25
  7. 7.
    Curry, H. B.: Foundations of Mathematical Logic. Dover, Dover edition, 1977. First edition published by McGraw–Hill in (1963)Google Scholar
  8. 8.
    Egly, U., Schmitt, S.: On intuitionistic proof transformations, their complexity, and application to constructive program synthesis. Fundam. Infor. 39(1,2), 59–83 (1999).  https://doi.org/10.3233/FI-1999-391204 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logic. Ph.D. thesis, University of Edinburgh (1994). http://hdl.handle.net/1842/407
  10. 10.
    Brünnler, K.: Deep sequent systems for modal logic. In: Governatori, G., Hodkinson, I., Venema, Y. (eds.) Advances in Modal Logic, Volume 6, pp. 107–119. College Publications (2006). http://www.aiml.net/volumes/volume6/Bruennler.ps
  11. 11.
    Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48(6), 551–577 (2009).  https://doi.org/10.1007/s00153-009-0137-3 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds.), Towards Mathematical Philosophy, volume 28 of Trends in Logic, pp 31–51. Springer (2009).  https://doi.org/10.1007/978-1-4020-9084-4_3
  13. 13.
    Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics. In.: Pfenning, F. (ed.), Foundations of Software Science and Computation Structures, 16th International Conference, FOSSACS 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16–24, 2013, Proceedings, volume 7794 of Lecture Notes in Computer Science, pp. 209–224. Springer (2013).  https://doi.org/10.1007/978-3-642-37075-5_14
  14. 14.
    Fitting, M.: Prefixed tableaus and nested sequents. Ann. Pure Appl. Logic 163(3), 291–313 (2012).  https://doi.org/10.1016/j.apal.2011.09.004 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Marin, S., Straßburger, L.: Label-free modular systems for classical and intuitionistic modal logics. In: Goré, R., Kooi, B., Kurucz, A. (eds.) Advances in Modal Logic, Volume 10, pp. 387–406. College Publications (2014). http://www.aiml.net/volumes/volume10/Marin-Strassburger.pdf
  16. 16.
    Chaudhuri, K., Marin, S., Straßburger, L.: Modular focused proof systems for intuitionistic modal logics. In: Kesner, D., Pientka, B. (eds.) 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016), vol 52, pp. 16:1–16:8. Schloss Dagstuhl (2016).  https://doi.org/10.4230/LIPIcs.FSCD.2016.16
  17. 17.
    Galmiche, D., Salhi, Y.: Label-free natural deduction systems for intuitionistic and classical modal logics. J. Appl. Non Class. Log. 20(4), 373–421 (2010).  https://doi.org/10.3166/jancl.20.373-421 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Inf. Comput. 209(12), 1465–1490 (2011).  https://doi.org/10.1016/j.ic.2011.10.003 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Došen, K.: Higher-level sequent-systems for intuitionistic modal logic. Publications de l’Institut Mathématique (N.S.), 39(53):3–12 (1986). http://www.komunikacija.org.rs/komunikacija/casopisi/publication/53/d001/show_download
  20. 20.
    Fischer Servi, G.: Axiomatizations for some intuitionistic modal logics. Rendiconti del Seminario Matematico, Università e Politecnico di Torino, 42(3):179–194 (1984). http://www.seminariomatematico.unito.it/rendiconti/cartaceo/42-3.html
  21. 21.
    Plotkin, G., Stirling, C.: A framework for intuitionistic modal logics. In: Halpern, J. (ed.) Theoretical Aspects of Reasoning About Knowledge, pp. 399–406 (1986). Extended abstract. http://www.tark.org/proceedings/tark_mar19_86/p399-plotkin.pdf
  22. 22.
    Fitch, F.B.: Intuitionistic modal logic with quantifiers. Port. Math. 7(2):113–118 (1948). http://purl.pt/2174
  23. 23.
    Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Dover, Dover edition, 2006. Originally published as a Ph.D. thesis by Almquist & Wiksell in (1965)Google Scholar
  24. 24.
    Bierman, G.M., de Paiva, V.C.V.: On an intuitionistic modal logic. Stud. Log. 65(3), 383–416 (2000).  https://doi.org/10.1023/A:1005291931660 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math. Struct. Comput. Sci. 11(4), 511–540 (2001).  https://doi.org/10.1017/S0960129501003322 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and Kripke semantics for constructive S4 modal logic. In: Fribourg, L. (ed.) Computer Science Logic, 15th International Workshop, CSL 2001, 10th Annual Conference of the EACSL, Paris, France, September 10–13, 2001, Proceedings, volume 2142 of Lecture Notes in Computer Science, pp. 292–307. Springer (2001).   https://doi.org/10.1007/3-540-44802-0_21
  27. 27.
    Arisaka, R., Das, A., Straßburger, L.: On nested sequents for constructive modal logic. Log. Methods Comput. Sci. 11(3:7), pp. 1–33 (2015).  https://doi.org/10.2168/LMCS-11(3:7)2015
  28. 28.
    Garson, J.: Modal logic. In: Zalta, E.N. (ed.), The Stanford Encyclopedia of Philosophy. Stanford University, Spring 2016 edition (2016). https://plato.stanford.edu/archives/spr2016/entries/logic-modal/
  29. 29.
    Ewald, W.B.: Intuitionistic tense and modal logic. J. Symb. Log. 51(1), 166–179 (1986).  https://doi.org/10.2307/2273953 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Marin, S.: Modal proof theory through a focused telescope. Ph.D. thesis, Université Paris-Saclay & École Polytechnique (2018)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Technische Universität WienViennaAustria
  2. 2.Inria Saclay—Ile-de-France & LIX, Ecole PolytechniquePalaiseauFrance

Personalised recommendations