Advertisement

Some remarks on inp-minimal and finite burden groups

  • Jan Dobrowolski
  • John Goodrick
Article
  • 9 Downloads

Abstract

We prove that any left-ordered inp-minimal group is abelian and we provide an example of a non-abelian left-ordered group of dp-rank 2. Furthermore, we establish a necessary condition for a group to have finite burden involving normalizers of definable sets, reminiscent of other chain conditions for stable groups.

Keywords

dp-minimal Left-ordered groups Finite burden groups 

Mathematics Subject Classification

03C45 03C60 06F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, H.: Strong theories, burden, and weight, preprint (2007). arXiv:1507.0391
  2. 2.
    Chernikov, A., Kaplan, I., Simon, P.: Groups and fields with NTP2. Proc. Am. Math. Soc. 143, 395–406 (2015)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gurevich, Y., Schmitt, P.: The theory of ordered abelian groups does not have the independence property. Trans. Am. Math. Soc. 284, 171–182 (1984). arXiv:1507.0391 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Halevi, Y., Hasson, A.: Strongly dependent ordered abelian groups and Henselian fields, preprint (2017). arXiv:1706.03376
  5. 5.
    Jahnke, F., Simon, P., Walsberg, E.: Dp-minimal valued fields (2015). arXiv:1507.0391
  6. 6.
    Johnson, W.: On dp-minimal fields (2015). arXiv:1507.0274
  7. 7.
    Kaplan, I., Onshuus, A., Usvyatsov, A.: Additivity of the dp-rank. Trans. Am. Math. Soc. 365(11), 5783–5804 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lam, T.Y.: A First Course in Noncommutative Rings. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
  9. 9.
    Levi, E., Kaplan, I., Simon, P.: Some remarks on dp-minimal groups (2016). arXiv:1605.07867
  10. 10.
    Onshuus, A., Vicaria, M.: Definable groups in models of Presburger Arithmetic and \(G^{00}\), preprint (2016)Google Scholar
  11. 11.
    Onshuus, A., Usvyatsov, A.: On dp-minimality, strong dependence, and weight. J. Symb. Log. 76(3), 737–758 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Shelah, S.: Dependent first-order theories, continued. Isr. J. Math. 173(1), 1 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Simon, P.: On dp-minimal ordered structures. J. Symb. Log. 76(2), 448–460 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Usvyatsov, A.: On generically stable types in dependent theories. J. Symb. Log. 74(1), 216–250 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of LeedsLeedsUK
  2. 2.Departamento de MatemáticasUniversidad de los AndesBogotáColombia

Personalised recommendations