Archive for Mathematical Logic

, Volume 57, Issue 3–4, pp 299–315 | Cite as

Quasiminimal abstract elementary classes

  • Sebastien Vasey


We propose the notion of a quasiminimal abstract elementary class (AEC). This is an AEC satisfying four semantic conditions: countable Löwenheim–Skolem–Tarski number, existence of a prime model, closure under intersections, and uniqueness of the generic orbital type over every countable model. We exhibit a correspondence between Zilber’s quasiminimal pregeometry classes and quasiminimal AECs: any quasiminimal pregeometry class induces a quasiminimal AEC (this was known), and for any quasiminimal AEC there is a natural functorial expansion that induces a quasiminimal pregeometry class. We show in particular that the exchange axiom is redundant in Zilber’s definition of a quasiminimal pregeometry class.


Abstract elementary class Quasiminimal pregeometry class Pregeometry Closure space Exchange axiom Homogeneity 

Mathematics Subject Classification

Primary 03C48 Secondary 03C45 03C52 03C55 03C75 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldwin, J.T.: Categoricity, University Lecture Series, vol. 50. American Mathematical Society, Providence (2009)Google Scholar
  2. 2.
    Bays, M., Hart, B., Hyttinen, T., Kesälä, M., Kirby, J.: Quasiminimal structures and excellence. Bull. Lond. Math. Soc. 46(1), 155–163 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baldwin, J.T., Shelah, S.: Examples of non-locality. J. Symb. Logic 73, 765–782 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Crapo, H.H.: Rota, Gian-Carlo: On the Foundations of Combinatorial Geometry: Combinatorial Geometries, preliminary edn. MIT Press, Cambridge (1970)Google Scholar
  5. 5.
    Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geom. Dedic. 19, 247–270 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Grossberg, R.: A Course in Model Theory I (A book in preparation)Google Scholar
  7. 7.
    Haykazyan, L.: Categoricity in quasiminimal pregeometry classes. J. Symb. Logic 81(1), 56–64 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hyttinen, T., Kangas, K.: Quasiminimal structures, groups and Zariski-like geometries. Ann. Pure Appl. Logic 167(6), 457–505 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Itai, M., Tsuboi, A., Wakai, K.: Construction of saturated quasi-minimal structure. J. Symb. Logic 69(1), 9–22 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kirby, J.: On quasiminimal excellent classes. J. Symb. Logic 75(2), 551–564 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pillay, A.: Geometric Stability Theory, Oxford Logic Guides. Clarendon Press, Oxford (1996)Google Scholar
  12. 12.
    Pillay, A., Tanović, P.: Generic stability, regularity, and quasi-minimality. In: Hart, B., Kucera, T.G., Pillay, A., Scott, P.J., Seely, R.A.G. (eds.) Models, Logics, and Higher-Dimensional Categories, pp. 189–211. American Mathematical Society, Providence (2011)CrossRefGoogle Scholar
  13. 13.
    Shelah, S.: Classification of non elementary classes II. Abstract elementary classes, classification theory (Chicago, IL, 1985). Lecture Notes in Mathematics, vol. 1292, pp. 419–497. Springer, New York (1987)Google Scholar
  14. 14.
    Shelah, S.: Classification Theory for Abstract Elementary Classes, Studies in Logic: Mathematical Logic and Foundations, vol. 18. College Publications, New York (2009)Google Scholar
  15. 15.
    Vasey, S.: Infinitary stability theory. Arch. Math. Logic 55, 567–592 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Vasey, S.: Shelah’s eventual categoricity conjecture in universal classes: part I. Ann. Pure Appl. Logic 168(9), 1609–1642 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zilber, B.: Elements of geometric stability theory.
  18. 18.
    Zilber, B.: A Categoricity Theorem for Quasi-Minimal Excellent Classes, Logic and its Applications. In: Blass, A., Zhang, Y. (eds.) Contemporary Mathematics, pp. 297–306. American Mathematical Society, Providence (2005)Google Scholar
  19. 19.
    Zilber, B.: Pseudo-exponentiation on algebraically closed fields of characteristic zero. Ann. Pure Appl. Logic 132, 67–95 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mathematical SciencesCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations