Countable OD sets of reals belong to the ground model

Article

Abstract

It is true in the Cohen, Solovay-random, dominaning, and Sacks generic extension, that every countable ordinal-definable set of reals belongs to the ground universe. It is true in the Solovay collapse model that every non-empty OD countable set of sets of reals consists of \(\text {OD}\) elements.

Keywords

Countable sets Ordinal definability Generic extensions 

Mathematics Subject Classification

03E15 03E35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagaria, J., Kanovei, V.: On coding uncountable sets by reals. Math. Log. Q. 56(4), 409–424 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bartoszyński, T., Judah, H.: Set Theory: On the Structure of the Real Line. A. K. Peters Ltd., Wellesley (1995)MATHGoogle Scholar
  3. 3.
    Caicedo, A.E., Ketchersid, R.: A trichotomy theorem in natural models of \(\text{AD}^+\). In: Set Theory and Its Applications. Annual Boise Extravaganza in set theory, Boise, ID, USA, 1995–2010, pp. 227–258. American Mathematical Society (AMS), Providence (2011)Google Scholar
  4. 4.
    Enayat, A.: On the Leibniz–Mycielski axiom in set theory. Fundam. Math. 181(3), 215–231 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Grigorieff, S.: Intermediate submodels and generic extensions in set theory. Ann. Math. 2(101), 447–490 (1975)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Jensen, R.: Definable sets of minimal degree. In: Mathematics Logic Foundations Set Theory, Proceedings of the International Colloque, Jerusalem 1968, pp. 122–128 (1970)Google Scholar
  7. 7.
    Kanovei, V.: An Ulm-type classification theorem for equivalence relations in Solovay model. J. Symb. Log. 62(4), 1333–1351 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kanovei, V.: OD Elements of Countable OD Sets in the Solovay Model. ArXiv e-prints, arXiv:1603.04237 (2016)
  9. 9.
    Kanovei, V., Lyubetsky, V.: An effective minimal encoding of uncountable sets. Sib. Math. J. 52(5), 854–863 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kanovei, V., Lyubetsky, V.: An infinity which depends on the axiom of choice. Appl. Math. Comput. 218(16), 8196–8202 (2012)MathSciNetMATHGoogle Scholar
  11. 11.
    Kanovei, V., Lyubetsky, V.: A Countable Definable Set of Reals Containing No Definable Elements. ArXiv e-prints, arXiv:1408.3901 (2014)
  12. 12.
    Kanovei, V., Lyubetsky, V.: A definable \(E_0\) class containing no definable elements. Arch. Math. Log. 54(5–6), 711–723 (2015)CrossRefMATHGoogle Scholar
  13. 13.
    Kanovei, V., Lyubetsky, V.: On countable cofinality and decomposition of definable thin orderings. Fundam. Math. 235(1), 13–36 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kunen, K.: Handbook of Set-Theoretic Topology, pp. 887–911. North-Holland, Amsterdam (1984)CrossRefMATHGoogle Scholar
  15. 15.
    Palumbo, J.: Unbounded and dominating reals in Hechler extensions. J. Symb. Log. 78(1), 275–289 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Palumbo, J.T.: Hechler Forcing and Its Relatives, Ph.D. thesis. University of California, Los Angeles (2013)Google Scholar
  17. 17.
    Solovay, R.M.: A model of set-theory in which every set of reals is Lebesgue measurable. Ann. Math. 2(92), 1–56 (1970)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Stern, J.: On Lusin’s restricted continuum problem. Ann. Math. 2(120), 7–37 (1984)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute for Information Transmission Problems (IITP)MoscowRussia
  2. 2.Moscow State University of Railway Engineering (MIIT)MoscowRussia

Personalised recommendations