Skip to main content
Log in

l-Groups C(X) in continuous logic

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In the context of continuous logic, this paper axiomatizes both the class \(\mathcal {C}\) of lattice-ordered groups isomorphic to C(X) for X compact and the subclass \(\mathcal {C}^+\) of structures existentially closed in \(\mathcal {C}\); shows that the theory of \(\mathcal {C}^+\) is \(\aleph _0\)-categorical and admits elimination of quantifiers; establishes a Nullstellensatz for \(\mathcal {C}\) and \(\mathcal {C}^+\); shows that \(C(X)\in \mathcal {C}\) has a prime-model extension in \(\mathcal {C}^+\) just in case X is Boolean; and proves that in a sense relevant to continuous logic, positive formulas admit in \(\mathcal {C}^+\) elimination of quantifiers to positive formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bankston, P.: Some applications of the ultrapower theorem to the theory of compacta. Appl. Categ. Struct. 8, 45–66 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben Yaacov, I., Berenstein, A., Henson, C.W., Usvyatsov, A.: Model theory for metric structures. In: Chatzidakis, Z., Macpherson, D., Pillay, A., Wilkie, A. (eds.) Model Theory with Applications to Algebra and Analysis, vol. 2, pp. 315–427. Cambridge University Press, Cambridge (2008)

  3. Bohnenblust, H.F., Kakutani, S.: Concrete representation of (M)-spaces. Ann. Math. 42, 1025–1028 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  4. Comfort, W.W., Negrepontis, S.: The Theory of Ultrafilters. Springer-Verlag, New York (1974)

    Book  MATH  Google Scholar 

  5. Eagle, C., Vignati, A.: Saturation and elementary equivalence of \(C^{*}\)-algebras. arXiv:1406.4875v4

  6. Efimov, B., Engelking, R.: Remarks on dyadic spaces. II. Colloq. Math. 13, 181–197 (1964/1965)

  7. Gillman, L., Jerison, M.: Rings of Continuous Functions. D. Van Nostrand Co., Princeton (1960)

    Book  MATH  Google Scholar 

  8. Glass, A.M.W., Pierce, K.R.: Existentially complete abelian lattice-ordered groups. Trans. Am. Math. Soc. 261, 255–270 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glass, A.M.W., Pierce, K.R.: Equations and inequations in lattice-ordered groups. In: Smith, J.E., Kenny, G.O., Ball, R.N. (eds.) Ordered Groups: Proceedings of the Boise State Conference, pp. 141–171. Marcel Dekker Inc, New York (1980)

    Google Scholar 

  10. Gleason, A.: Projective topological spaces. Ill. J. Math. 2, 482–489 (1958)

    MathSciNet  MATH  Google Scholar 

  11. Hager, A.: Minimal covers of topological spaces. In: Kopperman, R., Misra, P., Reichman, J., Todd, A. (eds.) Papers on General Topology and Related Category Theory and Topological Algebra, pp. 44–59. New York Academy of Sciences, New York (1989)

    Google Scholar 

  12. Hodges, W.: Building Models by Games. Dover Publications, New York (2006)

    MATH  Google Scholar 

  13. Kakutani, S.: Concrete representation of abstract (M)-spaces (A characterization of the space of continuous functions). Ann. Math. 42, 994–1024 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  14. Levy, R.: Almost P-spaces. Can. J. Math. 29, 284–288 (1977)

    Article  MATH  Google Scholar 

  15. Saracino, D., Wood, C.: Finitely generic abelian lattice-ordered groups. Trans. Am. Math. Soc. 277, 113–123 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Saracino, D., Wood, C.: An example in the model theory of abelian lattice-ordered groups. Algebra Universalis 19, 34–37 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Scowcroft, P.: Some model-theoretic correspondences between dimension groups and AF algebras. Ann. Pure Appl. Log. 162, 755–785 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stone, M.H.: The generalized Weierstrass approximation theorem. Math. Mag. 21, 167–184 (1948)

    Article  MathSciNet  Google Scholar 

  19. van den Dries, L.: Some applications of a model theoretic fact to (semi-) algebraic geometry. Indag. Math. 44, 397–401 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weispfenning, V.: Model Theory of Lattice Products. Habilitationsschrift, U. Heidelberg, Heidelberg (1979)

    MATH  Google Scholar 

  21. Weispfenning, V.: Model theory of abelian \(l\)-groups. In: Glass, A.M.W., Holland, W.C. (eds.) Lattice-Ordered Groups: Advances and Techniques, pp. 41–79. Kluwer Academic Publishers, Dordrecht (1989)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Scowcroft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scowcroft, P. l-Groups C(X) in continuous logic. Arch. Math. Logic 57, 239–272 (2018). https://doi.org/10.1007/s00153-017-0566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-017-0566-3

Keywords

Mathematics Subject Classification

Navigation