A herbrandized functional interpretation of classical first-order logic


We introduce a new typed combinatory calculus with a type constructor that, to each type \(\sigma \), associates the star type \(\sigma ^*\) of the nonempty finite subsets of elements of type \(\sigma \). We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory calculus, we define a functional interpretation of first-order predicate logic and prove a corresponding soundness theorem. It is seen that each theorem of classical first-order logic is connected with certain formulas which are tautological in character. As a corollary, we reprove Herbrand’s theorem on the extraction of terms from classically provable existential statements.

This is a preview of subscription content, access via your institution.


  1. 1.

    Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica”) interpretation. In: Buss, S.R. (ed.) Handbook of Proof Theory, Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 337–405. North Holland, Amsterdam (1998)

    Google Scholar 

  2. 2.

    Avigad, J., Towsner, H.: Functional interpretation and inductive definitions. J. Symb. Log. 74(4), 1100–1120 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Borges, A.: On the herbrandised interpretation for nonstandard arithmetic. Master’s thesis, Universidade de Lisboa (2016)

  4. 4.

    Diller, J.: Logical problems of functional interpretations. Ann. Pure Appl. Log. 114, 27–42 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Diller, J., Nahm, W.: Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen. Archive für mathematische Logik und Grundlagenforschung 16, 49–66 (1974)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Ferreira, F., Nunes, A.: Bounded modified realizability. J. Symb. Log. 71, 329–346 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Ferreira, F., Oliva, P.: Bounded functional interpretation. Ann. Pure Appl. Log. 135, 73–112 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Gerhardy, P., Kohlenbach, U.: Extracting Herbrand disjunctions by functional interpretation. Arch. Math. Log. 44, 633–644 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. dialectica 12, 280–287 (1958). Reprinted with an English translation in [10], pp. 240–251

  10. 10.

    Gödel, K.: On a hitherto unutilized extension of the finitary standpoint. In: Feferman, S., et al. (eds.) Collected Works, vol. II. Oxford University Press, Oxford (1990)

  11. 11.

    Shoenfield, J.R.: Mathematical Logic. Addison-Wesley Publishing Company, Boston (1967). Republished in 2001 by AK Peters

  12. 12.

    Statman, R.: Lower bounds on Herbrand’s theorem. Proc. Am. Math. Soc. 75(1), 104–107 (1979)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Tait, W.: Intentional interpretations of functionals of finite type I. J. Symb. Log. 32, 198–212 (1967)

    Article  MATH  Google Scholar 

  14. 14.

    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  15. 15.

    Troelstra, A.S. (ed.): Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics, vol. 344. Springer, Berlin (1973)

    Google Scholar 

  16. 16.

    van den Berg, B., Briseid, E., Safarik, P.: A functional interpretation for nonstandard arithmetic. Ann. Pure Appl. Log. 163(12), 1962–1994 (2012)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Fernando Ferreira.

Additional information

Both authors acknowledge Centro de Matemática, Aplicações Fundamentais e Investigação Operacional (Universidade de Lisboa) and the associated support of Fundação para a Ciência e a Tecnologia (FCT) [UID/MAT/04561/2013]. The second author is also grateful to FCT [UID/CEC/00408/2013 and Grant SFRH/BPD/93278/2013] and to Large-Scale Informatics Systems Laboratory (Universidade de Lisboa).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, F., Ferreira, G. A herbrandized functional interpretation of classical first-order logic. Arch. Math. Logic 56, 523–539 (2017). https://doi.org/10.1007/s00153-017-0555-6

Download citation


  • Functional interpretations
  • First-order logic
  • Star combinatory calculus
  • Finite sets
  • Tautologies
  • Herbrand’s theorem

Mathematics Subject Classification

  • 03F10
  • 03B10
  • 03B40
  • 03B15