Abstract
We introduce a new typed combinatory calculus with a type constructor that, to each type \(\sigma \), associates the star type \(\sigma ^*\) of the nonempty finite subsets of elements of type \(\sigma \). We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory calculus, we define a functional interpretation of first-order predicate logic and prove a corresponding soundness theorem. It is seen that each theorem of classical first-order logic is connected with certain formulas which are tautological in character. As a corollary, we reprove Herbrand’s theorem on the extraction of terms from classically provable existential statements.
Similar content being viewed by others
References
Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica”) interpretation. In: Buss, S.R. (ed.) Handbook of Proof Theory, Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 337–405. North Holland, Amsterdam (1998)
Avigad, J., Towsner, H.: Functional interpretation and inductive definitions. J. Symb. Log. 74(4), 1100–1120 (2009)
Borges, A.: On the herbrandised interpretation for nonstandard arithmetic. Master’s thesis, Universidade de Lisboa (2016)
Diller, J.: Logical problems of functional interpretations. Ann. Pure Appl. Log. 114, 27–42 (2002)
Diller, J., Nahm, W.: Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen. Archive für mathematische Logik und Grundlagenforschung 16, 49–66 (1974)
Ferreira, F., Nunes, A.: Bounded modified realizability. J. Symb. Log. 71, 329–346 (2006)
Ferreira, F., Oliva, P.: Bounded functional interpretation. Ann. Pure Appl. Log. 135, 73–112 (2005)
Gerhardy, P., Kohlenbach, U.: Extracting Herbrand disjunctions by functional interpretation. Arch. Math. Log. 44, 633–644 (2005)
Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. dialectica 12, 280–287 (1958). Reprinted with an English translation in [10], pp. 240–251
Gödel, K.: On a hitherto unutilized extension of the finitary standpoint. In: Feferman, S., et al. (eds.) Collected Works, vol. II. Oxford University Press, Oxford (1990)
Shoenfield, J.R.: Mathematical Logic. Addison-Wesley Publishing Company, Boston (1967). Republished in 2001 by AK Peters
Statman, R.: Lower bounds on Herbrand’s theorem. Proc. Am. Math. Soc. 75(1), 104–107 (1979)
Tait, W.: Intentional interpretations of functionals of finite type I. J. Symb. Log. 32, 198–212 (1967)
Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, Cambridge (1996)
Troelstra, A.S. (ed.): Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics, vol. 344. Springer, Berlin (1973)
van den Berg, B., Briseid, E., Safarik, P.: A functional interpretation for nonstandard arithmetic. Ann. Pure Appl. Log. 163(12), 1962–1994 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Both authors acknowledge Centro de Matemática, Aplicações Fundamentais e Investigação Operacional (Universidade de Lisboa) and the associated support of Fundação para a Ciência e a Tecnologia (FCT) [UID/MAT/04561/2013]. The second author is also grateful to FCT [UID/CEC/00408/2013 and Grant SFRH/BPD/93278/2013] and to Large-Scale Informatics Systems Laboratory (Universidade de Lisboa).
Rights and permissions
About this article
Cite this article
Ferreira, F., Ferreira, G. A herbrandized functional interpretation of classical first-order logic. Arch. Math. Logic 56, 523–539 (2017). https://doi.org/10.1007/s00153-017-0555-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-017-0555-6
Keywords
- Functional interpretations
- First-order logic
- Star combinatory calculus
- Finite sets
- Tautologies
- Herbrand’s theorem