Archive for Mathematical Logic

, Volume 56, Issue 7–8, pp 733–782 | Cite as

Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points

  • Natasha Dobrinen
  • José G. Mijares
  • Timothy Trujillo


A general method for constructing a new class of topological Ramsey spaces is presented. Members of such spaces are infinite sequences of products of Fraïssé classes of finite relational structures satisfying the Ramsey property. The Product Ramsey Theorem of Sokič is extended to equivalence relations for finite products of structures from Fraïssé classes of finite relational structures satisfying the Ramsey property and the Order-Prescribed Free Amalgamation Property. This is essential to proving Ramsey-classification theorems for equivalence relations on fronts, generalizing the Pudlák–Rödl Theorem to this class of topological Ramsey spaces. To each topological Ramsey space in this framework corresponds an associated ultrafilter satisfying some weak partition property. By using the correct Fraïssé classes, we construct topological Ramsey spaces which are dense in the partial orders of Baumgartner and Taylor (Trans Am Math Soc 241:283–309, 1978) generating p-points which are k-arrow but not \(k+1\)-arrow, and in a partial order of Blass (Trans Am Math Soc 179:145–166, 1973) producing a diamond shape in the Rudin-Keisler structure of p-points. Any space in our framework in which blocks are products of n many structures produces ultrafilters with initial Tukey structure exactly the Boolean algebra \(\mathcal {P}(n)\). If the number of Fraïssé classes on each block grows without bound, then the Tukey types of the p-points below the space’s associated ultrafilter have the structure exactly \([\omega ]^{<\omega }\). In contrast, the set of isomorphism types of any product of finitely many Fraïssé classes of finite relational structures satisfying the Ramsey property and the OPFAP, partially ordered by embedding, is realized as the initial Rudin-Keisler structure of some p-point generated by a space constructed from our template.


Ultrafilter Tukey Rudin-Keisler Ramsey theory Topological Ramsey space 

Mathematics Subject Classification

03E02 03E05 03E40 05C55 05D10 54H05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartoszyński, S.T., Judah, H.: Set Theory on the Structure of the Real Line. A. K. Peters Ltd, Wellesley (1995)MATHGoogle Scholar
  2. 2.
    Baumgartner, J.E., Taylor, A.D.: Partition theorems and ultrafilters. Trans. Am. Math. Soc. 241, 283–309 (1978)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Blass, A.: The Rudin-Keisler ordering of P-points. Trans. Am. Math. Soc. 179, 145–166 (1973)MathSciNetMATHGoogle Scholar
  4. 4.
    Di Prisco, C., Mijares, J., Nieto, J.: Local Ramsey theory. An abstract approach, Mathematical Logic Quarterly, 13 pp (2017)Google Scholar
  5. 5.
    Dobrinen, N.: Continuous cofinal maps on ultrafilters, 25 pp. Results have been incorporated into a new extended work (2010)Google Scholar
  6. 6.
    Dobrinen, N.: Continuous and other finitely generated canonical cofinal maps on ultrafilters. arXiv:1505.00368 (2015), 41 pp, Submitted
  7. 7.
    Dobrinen, N.: Survey on the Tukey theory of ultrafilters. Zbornik Radova 17(25), 53–80 (2015)MathSciNetMATHGoogle Scholar
  8. 8.
    Dobrinen, N.: High dimensional Ellentuck spaces and initial chains in the Tukey structure of non-p-points. J. Symb. Log. 81(1), 237–263 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dobrinen, N.: Infinite-dimensional Ellentuck spaces and Ramsey-classification theorems. J. Math. Log. 16(1), 1650003 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dobrinen, N., Todorcevic, S.: Tukey types of ultrafilters. Ill. J. Math. 55(3), 907–951 (2011)MathSciNetMATHGoogle Scholar
  11. 11.
    Dobrinen, N., Todorcevic, S.: A new class of Ramsey-classification Theorems and their applications in the Tukey theory of ultrafilters, Part 1. Trans. Am. Math. Soc. 366(3), 1659–1684 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dobrinen, N., Todorcevic, S.: A new class of Ramsey-classification Theorems and their applications in the Tukey theory of ultrafilters, Part 2. Trans. Am. Math. Soc. 367(7), 4627–4659 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ellentuck, E.: A new proof that analytic sets are Ramsey. J. Symb. Log. 39(1), 163–165 (1974)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Erdős, P., Rado, R.: A combinatorial theorem. J. Lond. Math. Soc. 25, 249–255 (1950)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Farah, I.: Semiselective coideals. Mathematika 45(1), 79–103 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kechris, A.S., Pestov, V.G., Todorcevic, S.: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal. 15(1), 106–189 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Laflamme, C.: Forcing with filters and complete combinatorics. Ann. Pure Appl. Log. 42, 125–163 (1989)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mijares, J.G.: A notion of selective ultrafilter corresponding to topological Ramsey spaces. Math. Log. Q. 53(3), 255–267 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Mijares, J., Padilla, G.: A Ramsey space of infinite polyhedra and the infinite random polyhedron, 20 pp, Submitted (2012)Google Scholar
  20. 20.
    Mijares, J., Torrealba, D.: A topological Ramsey space of metric structures. Acta Cientifica Venezolana (2017, accepted)Google Scholar
  21. 21.
    Nešetřil, J., Rödl, V.: Ramsey classes of set systems. J. Comb. Theory Ser. A 34, 183–201 (1983)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Pröml, H.J., Voigt, B.: Canonical forms of Borel-measurable mappings \({\Delta }: [\omega ]^{\omega }\rightarrow \mathbb{R}\). J. Comb. Theory Ser. A 40, 409–417 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pudlák, P., Rödl, V.: Partition theorems for systems of finite subsets of integers. Discrete Math. 39, 67–73 (1982)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Raghavan, D., Todorcevic, S.: Cofinal types of ultrafilters. Ann. Pure Appl. Log. 163(3), 185–199 (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sokić, M.: Ramsey property of posets and related structures. Ph.D. thesis, University of Toronto (2010)Google Scholar
  26. 26.
    Todorcevic, S.: Introduction to Ramsey Spaces. Princeton University Press, Princeton (2010)MATHGoogle Scholar
  27. 27.
    Trujillo, T.: Topological Ramsey spaces, associated ultrafilters, and their applications to the Tukey theory of ultrafilters and Dedekind cuts of nonstandard arithmetic. Ph.D. thesis, University of Denver (2014)Google Scholar
  28. 28.
    Trujillo, T.: Selective but not Ramsey. Topol. Appl. 202, 61–69 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Natasha Dobrinen
    • 1
  • José G. Mijares
    • 2
  • Timothy Trujillo
    • 3
  1. 1.Department of MathematicsUniversity of DenverDenverUSA
  2. 2.Department of Mathematical and Statistical SciencesUniversity of Colorado DenverDenverUSA
  3. 3.Applied Mathematics and StatisticsColorado School of MinesGoldenUSA

Personalised recommendations