Baer, R.: Abelian groups without elements of finite order. Duke Math. J. 3, 68–122 (1937)
MathSciNet
Article
MATH
Google Scholar
Barwise, J.: Back and forth through infinitary logic. In: Morley, M.D. (ed.) Studies in Model Theory. Studies in Mathematics, p. 2. Mathematical Association of America, Washington (1973)
Google Scholar
Barwise, J., Eklof, P.: Infinitary properties of abelian torsion groups. Ann. Math. Log. 2, 25–68 (1970)
MathSciNet
Article
MATH
Google Scholar
Fuchs, L.: Infinite Abelian Groups, vol. II. Academic Press, New York (1973)
MATH
Google Scholar
Göbel, R., Leistner, K., Loth, P., Strüngmann, L.: Infinitary equivalence of \(\mathbb{Z}_p\)-modules with nice decomposition bases. J. Comm. Algebra 3, 321–348 (2011)
Article
MATH
Google Scholar
Hill, P.: On the classification of abelian groups, Preprint (1967)
Hunter, R., Richman, F.: Global Warfield groups. Trans. Am. Math. Soc. 266(1), 555–572 (1981)
Hunter, R., Richman, F., Walker, E.: Warfield modules. In: Abelian Group Theory, Lecture Notes in Mathematics, vol. 616, pp. 87–123. Springer (1977)
Jacoby, C.: The classification in \(L_{\infty \omega }\) of groups with partial decomposition bases. Ph.D. thesis, University of California, Irvine (1980), revised version (2010)
Jacoby, C.: Undefinability of local Warfield groups in \(L_{\infty \omega }\). In: Groups and Model Theory: A Conference in Honor of Rüdiger Göbel’s 70th Birthday, Contemp. Math., vol. 576, pp. 151–162. American Mathematical Society, Providence, RI (2012)
Jacoby, C. and Loth, P.: Abelian groups with partial decomposition bases in \(L_{\infty \omega }^\delta \), Part II. In: Groups and Model Theory: A Conference in Honor of Rüdiger Göbel’s 70th Birthday, Contemp. Math., vol. 576, pp. 177–185. American Mathematical Society, Providence, RI (2012)
Jacoby, C., Loth, P.: \(\mathbb{Z}_p\)-modules with partial decomposition bases in \(L_{\infty \omega }^\delta \). Houst. J. Math. 40(4), 1007–1019 (2014)
MathSciNet
MATH
Google Scholar
Jacoby, C., Loth, P.: Partial decomposition bases and Warfield modules. Comm. Algebra 42, 4333–4349 (2014)
MathSciNet
Article
MATH
Google Scholar
Jacoby, C., Loth, P.: Partial decomposition bases and global Warfield groups, Comm. Algebra 44, 3262–3277 (2016)
Jacoby, C., Loth, P.: The classification of infinite abelian groups with partial decomposition bases in \(L_{\infty \omega }\) Rocky Mountain J. Math. (to appear)
Jacoby, C., Leistner, K., Loth, P., Strüngmann, L.: Abelian groups with partial decomposition bases in \(L_{\infty \omega }^\delta \), Part I. In: Groups and Model Theory: A Conference in Honor of Rüdiger Göbel’s 70th Birthday, Contemp. Math., vol. 576, pp. 163–175. American Mathematical Society, Providence, RI (2012)
Kaplansky, I.: Infinite Abelian Groups. University of Michigan Press, Ann Arbor (1968)
MATH
Google Scholar
Kaplansky, I.: Modules over Dedekind rings and valuation rings. Trans. Am. Math. Soc. 72, 327–340 (1952)
MathSciNet
Article
MATH
Google Scholar
Karp, C.: Finite quantification equivalence. In: Addison, J.W., Henkin, L., Tarski, A. (eds.) The Theory of Models, pp. 407–412. North-Holland, Amsterdam (1965)
Google Scholar
Nunke, R.: Homology and direct sums of countable abelian groups. Math. Zeit 101, 182–212 (1967)
MathSciNet
Article
MATH
Google Scholar
Richman, F.: A guide to valuated groups. In: Abelian Group Theory. Lecture Notes in Mathematics, vol. 616, pp. 73–86. Springer (1977)
Stanton, R. O.: Decomposition bases and Ulm’s Theorem. In: Abelian Group Theory. Lecture Notes in Mathematics, vol. 616, pp. 39–56. Springer (1977)
Ulm, H.: Zur Theorie der abzahlbar-unendlichen abelschen Gruppen. Math. Ann. 107, 774–803 (1933)
MathSciNet
Article
MATH
Google Scholar
Warfield, R.B.: Classification theory of abelian groups I, balanced projectives. Trans. Am. Math. Soc. 222, 33–63 (1976)
MathSciNet
MATH
Google Scholar
Warfield, R. B.: Classification theory of abelian groups II, local theory. Lecture Notes in Mathematics, vol. 874, pp. 322–349. Springer (1981)