Shelah and Stanley (Proc Am Math Soc 104(3):887–897, 1988) constructed a \(\kappa ^+\)-Aronszjan tree with an ascent path using \(\square _{\kappa }\). We show that \(\square _{\kappa ,2}\) does not imply the existence of Aronszajn trees with ascent paths. The proof goes through an intermediate combinatorial principle, which we investigate further.