Skip to main content

Fresh subsets of ultrapowers

Abstract

Shelah and Stanley (Proc Am Math Soc 104(3):887–897, 1988) constructed a \(\kappa ^+\)-Aronszjan tree with an ascent path using \(\square _{\kappa }\). We show that \(\square _{\kappa ,2}\) does not imply the existence of Aronszajn trees with ascent paths. The proof goes through an intermediate combinatorial principle, which we investigate further.

This is a preview of subscription content, access via your institution.

References

  1. Chen, W., Neeman, I.: Square principles with tail-end agreement. Arch. Math. Logic 54, 439–452 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  2. Cummings, J.: Iterated forcing and elementary embeddings. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 2, pp. 775–884. Springer, Berlin (2010)

    Chapter  Google Scholar 

  3. Cummings, J., Foreman, M., Magidor, M.: Squares, scales and stationary reflection. J. Math. Logic 01(01), 35–98 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  4. Devlin, K.J.: Reduced products of \(\aleph _{2}\)-trees. Fundam. Math. 118, 129–134 (1983)

    MathSciNet  Google Scholar 

  5. Hamkins, J.D.: Small forcing makes any cardinal superdestructible. J. Symb. Logic 63(1), 51–58 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  6. Magidor, M., Lambie-Hanson, C.: On the strengths and weaknesses of weak squares. In: Cummings, J., Schimmerling, E. (eds.) Appalachian Set Theory, 2006–2012. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  7. Neeman, I.: Two applications of finite side conditions at \(\omega _{2}\). http://www.math.ucla.edu/~ineeman/

  8. Shelah, S., Stanley, L.: Weakly compact cardinals and nonspecial Aronszajn trees. Proc. Am. Math. Soc. 104(3), 887–897 (1988)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Shani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shani, A. Fresh subsets of ultrapowers. Arch. Math. Logic 55, 835–845 (2016). https://doi.org/10.1007/s00153-016-0497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-016-0497-4

Keywords

  • Aronszajn trees
  • Square principles
  • Forcing
  • Fresh subsets

Mathematics Subject Classification

  • 03E05
  • 03E35