Archive for Mathematical Logic

, Volume 55, Issue 5–6, pp 835–845 | Cite as

Fresh subsets of ultrapowers

Article

Abstract

Shelah and Stanley (Proc Am Math Soc 104(3):887–897, 1988) constructed a \(\kappa ^+\)-Aronszjan tree with an ascent path using \(\square _{\kappa }\). We show that \(\square _{\kappa ,2}\) does not imply the existence of Aronszajn trees with ascent paths. The proof goes through an intermediate combinatorial principle, which we investigate further.

Keywords

Aronszajn trees Square principles Forcing Fresh subsets 

Mathematics Subject Classification

03E05 03E35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, W., Neeman, I.: Square principles with tail-end agreement. Arch. Math. Logic 54, 439–452 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cummings, J.: Iterated forcing and elementary embeddings. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 2, pp. 775–884. Springer, Berlin (2010)CrossRefGoogle Scholar
  3. 3.
    Cummings, J., Foreman, M., Magidor, M.: Squares, scales and stationary reflection. J. Math. Logic 01(01), 35–98 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Devlin, K.J.: Reduced products of \(\aleph _{2}\)-trees. Fundam. Math. 118, 129–134 (1983)MathSciNetGoogle Scholar
  5. 5.
    Hamkins, J.D.: Small forcing makes any cardinal superdestructible. J. Symb. Logic 63(1), 51–58 (1998)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Magidor, M., Lambie-Hanson, C.: On the strengths and weaknesses of weak squares. In: Cummings, J., Schimmerling, E. (eds.) Appalachian Set Theory, 2006–2012. Cambridge University Press, Cambridge (2012)Google Scholar
  7. 7.
    Neeman, I.: Two applications of finite side conditions at \(\omega _{2}\). http://www.math.ucla.edu/~ineeman/
  8. 8.
    Shelah, S., Stanley, L.: Weakly compact cardinals and nonspecial Aronszajn trees. Proc. Am. Math. Soc. 104(3), 887–897 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations