Brodhead, P., Kjos-Hanssen, B.: The strength of the Grätzer-Schmidt theorem. In: Mathematical Theory and Computational Practice, pp. 59–67 (2009)
Cholak, P.A., Jockusch, C.G., Slaman, T.A.: On the strength of Ramsey’s theorem for pairs. J. Symb. Log. 66(1), 1–55 (2001)
Grätzer, G., Schmidt, E.T.: Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24, 34–59 (1963)
MathSciNet
MATH
Google Scholar
Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (2003). With appendices by Davey, B.A., Freese, R., Ganter, B., Greferath, M., Jipsen, P., Priestley, H.A., Rose, H., Schmidt, E.T., Schmidt, S.E., Wehrung, F., Wille, R., Reprint of the 1998, 2nd edn
Kjos-Hanssen, B.: Local initial segments of the Turing degrees. Bull. Symb. Log. 9(1), 26–36 (2003)
Odifreddi, P.: Classical recursion theory, Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland Publishing Co., Amsterdam. The theory of functions and sets of natural numbers. With a foreword by Sacks, G.E. (1989)
Pavel, P.: A new proof of the congruence lattice representation theorem. Algebra Universalis 6(3), 269–275 (1976)
Sacks, G.E.: Higher Recursion Theory, Perspectives in Mathematical Logic. Springer, Berlin (1990)
Book
Google Scholar
Simpson, S.G.: Subsystems of Second Order Arithmetic, Second, Perspectives in Logic. Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY (2009)
Soare, R.I.: Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic. Springer, Berlin (1987). A study of computable functions and computably generated sets