Archive for Mathematical Logic

, Volume 55, Issue 3–4, pp 519–534 | Cite as

Computable dimension for ordered fields

Article

Abstract

The computable dimension of a structure counts the number of computable copies up to computable isomorphism. In this paper, we consider the possible computable dimensions for various classes of computable ordered fields. We show that computable ordered fields with finite transcendence degree are computably stable, and thus have computable dimension 1. We then build computable ordered fields of infinite transcendence degree which have infinite computable dimension, but also such fields which are computably categorical. Finally, we show that 1 is the only possible finite computable dimension for any computable archimedean field.

Keywords

Computable dimension Computable ordered fields Computably categorical ordered fields Effective algebra 

Mathematics Subject Classification

03D45 03C57 12J15 12L12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ash C., Knight J., Manasse M., Slaman T.: Generic copies of countable structures. Ann. Pure Appl. Log. 42(3), 195–205 (1989). doi:10.1016/0168-0072(89)90015-8 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chisholm J.: Effective model theory vs. recursive model theory. J. Symb. Log. 55(3), 1168–1191 (1990). doi:10.2307/2274481 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Csima, B.F., Khoussainov, B., Liu, J.: Computable categoricity of graphs with finite components. In: Logic and Theory of Algorithms. 4th Conference on Computability in Europe, CiE 2008, Athens, Greece, June 15–20, 2008. Proceedings, pp. 139–148. Springer, Berlin (2008). doi:10.1007/978-3-540-69407-6-15
  4. 4.
    Goncharov S.: Autostability of models and Abelian groups. Algebra Log. 19, 13–27 (1980). doi:10.1007/BF01669101 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Goncharov S., Dzgoev V.: Autostability of models. Algebra Log. 19, 28–37 (1980). doi:10.1007/BF01669102 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Goncharov S., Molokov A., Romanovskij N.: Nilpotent groups of finite algorithmic dimension. Sib. Math. J. 30(1), 63–68 (1989). doi:10.1007/BF01054216 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Goncharov, S.S.: Limit equivalent constructivizations. In: Mathematical Logic and the Theory of Algorithms, Trudy Inst. Mat., vol. 2, pp. 4–12. “Nauka” Sibirsk. Otdel., Novosibirsk (1982)Google Scholar
  8. 8.
    Goncharov S.S., Lempp S., Solomon R.: The computable dimension of ordered abelian groups. Adv. Math. 175(1), 102–143 (2003). doi:10.1016/S0001-8708(02)00042-7 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hungerford, T.W.: Algebra. Holt, Rinehart and Winston, Inc., New York (1974)Google Scholar
  10. 10.
    Jacobson, N.: Lectures in Abstract Algebra. Theory of Fields and Galois Theory, vol. III. D. Van Nostrand Co. Inc., Princeton, New Jersey (1964)Google Scholar
  11. 11.
    Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002). doi:10.1007/978-1-4613-0041-0
  12. 12.
    Lempp S., McCoy C., Miller R., Solomon R.: Computable categoricity of trees of finite height. J. Symb. Log. 70(1), 151–215 (2005). doi:10.2178/jsl/1107298515 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Levin, O.: Computability Theory, Reverse Mathematics, and Ordered Fields. Ph.D. thesis, University of Connecticut, Storrs, CT (2009)Google Scholar
  14. 14.
    Madison E.W.: A note on computable real fields. J. Symb. Log. 35, 239–241 (1970)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Marker D.: Model Theory, Graduate Texts in Mathematics, vol. 217. Springer, New York (2002)Google Scholar
  16. 16.
    Metakides G., Nerode A.: Effective content of field theory. Ann. Math. Log. 17(3), 289–320 (1979). doi:10.1016/0003-4843(79)90011-1 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Miller R.: d-computable categoricity for algebraic fields. J. Symb. Log. 74(4), 1325–1351 (2009). doi:10.2178/jsl/1254748694 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Miller R., Schoutens H.: Computably categorical fields via Fermat’s last theorem. Computability 2(1), 51–65 (2013)MathSciNetMATHGoogle Scholar
  19. 19.
    Nurtazin, A.T.: Strong and weak constructivizations, and enumerable families. Algebra i Logika 13, 311–323, 364 (1974)Google Scholar
  20. 20.
    Prestel A.: Lectures on Formally Real Fields, Lecture Notes in Mathematics, vol. 1093. Springer, Berlin (1984)Google Scholar
  21. 21.
    Remmel J.B.: Recursively categorical linear orderings. Proc. Am. Math. Soc. 83(2), 387–391 (1981)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Soare, R.I.: Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets. Perspectives in Mathematical Logic. Springer, Berlin (1987). doi:10.1007/978-3-662-02460-7

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Northern ColoradoGreeleyUSA

Personalised recommendations