Skip to main content
Log in

Equiconsistencies at subcompact cardinals

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We present equiconsistency results at the level of subcompact cardinals. Assuming SBH δ , a special case of the Strategic Branches Hypothesis, we prove that if δ is a Woodin cardinal and both □(δ) and □ δ fail, then δ is subcompact in a class inner model. If in addition □(δ +) fails, we prove that δ is \({\Pi_1^2}\) subcompact in a class inner model. These results are optimal, and lead to equiconsistencies. As a corollary we also see that assuming the existence of a Woodin cardinal δ so that SBH δ holds, the Proper Forcing Axiom implies the existence of a class inner model with a \({\Pi_1^2}\) subcompact cardinal. Our methods generalize to higher levels of the large cardinal hierarchy, that involve long extenders, and large cardinal axioms up to δ is δ +(n) supercompact for all n < ω. We state some results at this level, and indicate how they are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andretta A., Neeman I., Steel J.: The domestic levels of K c are iterable. Isr. J. Math. 125, 157–201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jensen R., Schimmerling E., Schindler R., Steel J.: Stacking mice. J. Symb. Log. 74(1), 315–335 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kypriotakis K., Zeman M.: A characterization of □(κ +) in extender models. Arch. Math. Log. 52(1–2), 67–90 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Martin D.A., Steel J.R.: Iteration trees. J. Am. Math. Soc. 7(1), 1–73 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mitchell W., Schindler R.: A universal extender model without large cardinals in V. J. Symb. Log. 69(2), 371–386 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mitchell, W.J., Steel, J.R.: Fine structure and iteration trees. Lecture Notes in Logic. vol. 3, Springer, Berlin (1994)

  7. Neeman, I., Steel, J.: Equiconsistencies at finite gap subcompactness (to appear)

  8. Neeman I., Steel J.: A weak Dodd-Jensen lemma. J. Symb. Log. 64(3), 1285–1294 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sargsyan, G.: A tale of hybrid mice, To appear in the Memoirs of the American Mathematical Society

  10. Schimmerling E.: Coherent sequences and threads. Adv. Math. 216(1), 89–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schimmerling E., Zeman M.: Square in core models. Bull. Symb. Log. 7(3), 305–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schimmerling E., Zeman M.: Characterization of □ κ in core models. J. Math. Log. 4(1), 1–72 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Steel J.R.: Local K c constructions. J. Symb. Log. 72(3), 721–737 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Steel, J.R.: Iterations with long extenders. Notes taken by Oliver Deiser (2002). http://math.berkeley.edu/~steel/papers/longext.kappaplus.ps

  15. Steel, J.R.: Derived models associated to mice, Computational prospects of infinity. Part I. Tutorials, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 14, World Sci. Publ., Hackensack, NJ, pp. 105–193 (2008)

  16. Woodin, W.H.: The fine structure of suitable extender models I. In preparation

  17. Woodin W.H.: Suitable extender models I. J. Math. Log. 10(1–2), 101–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Woodin W.H.: Suitable extender models II: beyond ω-huge. J. Math. Log. 11(2), 115–436 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zeman, M.: Inner models and large cardinals, de Gruyter Series in Logic and its Applications, vol. 5, Walter de Gruyter & Co., Berlin (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itay Neeman.

Additional information

We dedicate this paper to Rich Laver, a brilliant mathematician and a kind and generous colleague.

This material is based upon work supported by the National Science Foundation under Grants Nos. DMS-1101204 (Neeman) and DMS-0855692 (Steel), and the Simons Foundation under Simons Fellowship No. 225854 (Neeman).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neeman, I., Steel, J. Equiconsistencies at subcompact cardinals. Arch. Math. Logic 55, 207–238 (2016). https://doi.org/10.1007/s00153-015-0465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-015-0465-4

Keywords

Mathematics Subject Classification

Navigation