Indestructibility properties of remarkable cardinals


Remarkable cardinals were introduced by Schindler, who showed that the existence of a remarkable cardinal is equiconsistent with the assertion that the theory of \({L(\mathbb R)}\) is absolute for proper forcing (Schindler in Bull Symbolic Logic 6(2):176–184, 2000). Here, we study the indestructibility properties of remarkable cardinals. We show that if κ is remarkable, then there is a forcing extension in which the remarkability of κ becomes indestructible by all <κ-closed ≤κ-distributive forcing and all two-step iterations of the form \({Add(\kappa,\theta)*\dot{\mathbb R}}\), where \({\dot{\mathbb R}}\) is forced to be <κ-closed and ≤κ-distributive. In the process, we introduce the notion of a remarkable Laver function and show that every remarkable cardinal carries such a function. We also show that remarkability is preserved by the canonical forcing of the GCH.

This is a preview of subscription content, access via your institution.


  1. 1

    Bagaria, J., Hamkins, J.D., Tsaprounis, K., Usuba, T.: Superstrong and other large cardinals are never Laver indestructible. To appear in Archive for Mathematical Logic (special issue in honor of Richard Laver)

  2. 2

    Cheng, Y., Friedman, S.D., Hamkins, J.D.: Large cardinals need not be large in HOD. Ann. Pure Appl. Logic 166(11), 1186–1198 (2015)

  3. 3

    Corazza P.: The wholeness axiom and Laver sequences. Ann. Pure Appl. Logic 105(1–3), 157–260 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Cummings, J.: Iterated forcing and elementary embeddings. In Handbook of Set Theory, vols. 1, 2, 3, pp. 775–883. Springer, Dordrecht (2010)

  5. 5

    Dz̆amonja, M., Hamkins, J.D.: Diamond (on the regulars) can fail at any strongly unfoldable cardinal. Ann. Pure Appl. Logic. 144(1–3), 83–95, December 2006. Conference in honor of sixtieth birthday of James E. Baumgartner

  6. 6

    Golshani, M.: Woodin’s surgery method (2015) (preprint)

  7. 7

    Gitik M., Shelah S.: On certain indestructibility of strong cardinals and a question of Hajnal. Arch. Math. Logic 28(1), 35–42 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Gitman V., Welch P.D.: Ramsey-like cardinals II. J. Symb. Logic 76(2), 541–560 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Hamkins, J.D.: A class of strong diamond principles. Preprint (2002)

  10. 10

    Hamkins J.D., Johnstone T.A.: Indestructible strong unfoldability. Notre Dame J. Form. Log. 51(3), 291–321 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Jech, T.: Set theory. Springer Monographs in Mathematics. Springer, Berlin (2003). The third millennium edition, revised and expanded

  12. 12

    Kunen K.: Ultrafilters and independent sets. Trans. Am. Math. Soc. 172, 299–306 (1972)

    MathSciNet  Article  Google Scholar 

  13. 13

    Laver R.: Making the supercompactness of κ indestructible under κ-directed closed forcing. Israel J. Math. 29(4), 385–388 (1978)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    Lévy A., Solovay Robert M.: Measurable cardinals and the continuum hypothesis. Israel J. Math. 5, 234–248 (1967)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15

    Magidor M.: On the role of supercompact and extendible cardinals in logic. Israel J. Math. 10, 147–157 (1971)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Schindler R.-D.: Proper forcing and remarkable cardinals. Bull. Symb. Logic 6(2), 176–184 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Schindler R.-D.: Proper forcing and remarkable cardinals. II. J. Symb. Logic 66(3), 1481–1492 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Schindler, R.: Remarkable cardinals. In: Infinity, Computability, and Metamathematics: Festschrift in honour of the 60th birthdays of Peter Koepke and Philip Welch. Series: Tributes. College publications, London, GB (2014)

Download references

Author information



Corresponding author

Correspondence to Victoria Gitman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Gitman, V. Indestructibility properties of remarkable cardinals. Arch. Math. Logic 54, 961–984 (2015).

Download citation


  • Large cardinals
  • Remarkable cardinals
  • Indestructibility
  • Laver functions

Mathematics Subject Classification

  • 03E35
  • 03E55