Brünnler K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577 (2009)
Article
MATH
Google Scholar
Brünnler, K.: Nested Sequents. Habilitation Thesis, Bern (2010)
Fitting M.C.: Tableau methods of proof for modal logics. Notre Dame J. Formal Log. 13, 237–247 (1972)
MathSciNet
Article
MATH
Google Scholar
Fitting M.C.: Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht (1983)
Book
MATH
Google Scholar
Fitting, M.C.: Modal proof theory. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 85–138. Elsevier, Amsterdam (2007)
Fitting M.C.: Prefixed tableaus and nested sequents. Ann. Pure Appl. Log. 163, 291–313 (2012)
MathSciNet
Article
MATH
Google Scholar
Gabbay D.: Labelled Deductive Systems: Volume 1, Foundations. Oxford University Press, Oxford (1996)
Google Scholar
Goré R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer, Dordrecht (1999)
Chapter
Google Scholar
Hill B., Poggiolesi F.: A contraction-free and cut-free sequent calculus for propositional dynamic logic. Stud. Log. 94, 47–72 (2010)
MathSciNet
Article
MATH
Google Scholar
Maffezioli, P., Naibo, A., Negri, S.: The Church–Fitch knowability paradox in the light of structural proof theory. Synthese (2012). doi:10.1007/s11229-012-0061-7
Massacci F.: Strongly analytic tableaux for normal modal logics. In: Bundy, A. (ed.) Proceedings of CADE 12, Lecture Notes in Artificial Intelligence, vol. 814, pp. 723–737. Springer, Berlin (1994)
Google Scholar
Negri S.: Contraction-free sequent calculi for geometric theories with an application to Barr’s theorem. Arch. Math. Log. 42, 389–401 (2003)
MathSciNet
Article
MATH
Google Scholar
Negri S.: Proof analysis in modal logic. J. Philos. Log. 34, 507–544 (2005)
MathSciNet
Article
MATH
Google Scholar
Negri S.: Kripke completeness revisited. In: Primiero, G., Rahman, S. (eds.) Acts of Knowledge—History, Philosophy and Logic, pp. 247–282. College Publicatons, London (2009)
Google Scholar
Negri S., Dyckhoff R.: Proof analysis in intermediate logics. Arch. Math. Log. 51, 71–92 (2012)
MathSciNet
Article
MATH
Google Scholar
Poggiolesi, F.: Sequent Calculi for Modal Logic. PhD Thesis, Firenze/Paris (2008)
Poggiolesi F.: Gentzen calculi for modal propositional logics. Springer, Berlin (2011)
Book
Google Scholar
Viganò L.: Labelled Non-classical Logics. Kluwer, Dordrecht (2000)
Book
MATH
Google Scholar
Wansing H.: Displaying Modal Logic. Kluwer, Dordrecht (1998)
Book
MATH
Google Scholar
Wansing H.: Sequent systems for modal logics. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 8, 2nd edn, pp. 61–145. Kluwer, Dordrecht (2002)
Chapter
Google Scholar