Skip to main content

Deep sequent systems for modal logic

Abstract

We see a systematic set of cut-free axiomatisations for all the basic normal modal logics formed by some combination the axioms d, t, b, 4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the literal sense. No semantic notions are used inside the proof systems, in particular there is no use of labels. All their rules are invertible and the rules cut, weakening and contraction are admissible. All systems admit a straightforward terminating proof search procedure as well as a syntactic cut elimination procedure.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Avron A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds) Logic: From Foundations to Applications. Proceedings of the Logic Colloquium, Keele, UK, 1993, pp. 1–32. Oxford University Press, New York (1996)

    Google Scholar 

  2. 2

    Belnap N.D. Jr: Display logic. J. Philos. Log. 11, 375–417 (1982)

    MATH  MathSciNet  Google Scholar 

  3. 3

    Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. PhD thesis, Technische Universität Dresden (2003)

  4. 4

    Brünnler K.: Deep sequent systems for modal logic. In: Governatori, G., Hodkinson, I., Venema, Y. (eds) Advances in Modal Logic, vol. 6, pp. 107–119. College Publications, London (2006)

    Google Scholar 

  5. 5

    Brünnler K., Tiu A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds) LPAR 2001. Lecture Notes in Artificial Intelligence, vol. 2250, pp. 347–361. Springer, New York (2001)

    Google Scholar 

  6. 6

    Bull R.A.: Cut elimination for propositional dynamic logic without *. Math. Log. Grundlagen Math. 38, 85–100 (1992)

    MATH  Article  MathSciNet  Google Scholar 

  7. 7

    Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Spring (2008). http://plato.stanford.edu/archives/spr2008/entries/logic-modal/

  8. 8

    Guglielmi A.: A system of interaction and structure. ACM Trans. Comput. Log. 8(1), 1–64 (2007)

    Article  MathSciNet  Google Scholar 

  9. 9

    Guglielmi A., Straßburger L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (eds) CSL 2001. Lecture Notes in Computer Science, vol. 2142, pp. 54–68. Springer, New York (2001)

    Google Scholar 

  10. 10

    Hein R., Stewart C.: Purity through unravelling. In: Bruscoli, P., Lamarche, F., Stewart, C. (eds) Structures and Deduction, pp. 126–143. Technische Universität Dresden, Dresden (2005)

    Google Scholar 

  11. 11

    Kashima R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53, 119–135 (1994)

    MATH  Article  MathSciNet  Google Scholar 

  12. 12

    Martini S., Masini A.: A computational interpretation of modal proofs. In: Wansing, H. (eds) Proof Theory of Modal Logic. Applied Logic Series, vol. 2, pp. 213–241. Kluwer, Dordrecht (1996)

    Google Scholar 

  13. 13

    Negri S.: Proof analysis in modal logic. J. Philos. Log. 34(5–6), 507–544 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  14. 14

    Poggiolesi F.: The tree-hypersequent method for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds) Towards Mathematical Philosophy, Trends in Logic, pp. 9–30. Springer, New York (2009)

    Google Scholar 

  15. 15

    Sato M.: A study of Kripke-type models for some modal logics by Gentzen’s sequential method. Publ. Res. Inst. Math. Sci. Kyoto Univ. 13, 381–468 (1977)

    Article  Google Scholar 

  16. 16

    Stewart C., Stouppa P.: A systematic proof theory for several modal logics. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds) Advances in Modal Logic, vol. 5, pp. 309–333. King’s College Publications, London (2005)

    Google Scholar 

  17. 17

    Stouppa P.: A deep inference system for the modal logic S5. Stud. Log. 85(2), 199–214 (2007)

    MATH  Article  MathSciNet  Google Scholar 

  18. 18

    Straßburger, L.: Linear Logic and Noncommutativity in the Calculus of Structures. PhD thesis, Technische Universität Dresden (2003)

  19. 19

    Troelstra A.S., Schwichtenberg H.: Basic Proof Theory. Cambridge University Press, London (1996)

    MATH  Google Scholar 

  20. 20

    Wansing H.: Displaying Modal Logic. Trends in Logic Series, vol. 3. Kluwer, Dordrecht (1998)

    Google Scholar 

  21. 21

    Wansing H.: Sequent systems for modal logics. In: Gabbay, D., Guenther, F. (eds) Handbook of Philosophical Logic, vol. 8, 2nd edn, pp. 61–145. Kluwer, Dordrecht (2002)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kai Brünnler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brünnler, K. Deep sequent systems for modal logic. Arch. Math. Logic 48, 551–577 (2009). https://doi.org/10.1007/s00153-009-0137-3

Download citation

Keywords

  • Nested sequents
  • Modal logic
  • Cut elimination
  • Deep inference

Mathematics Subject Classification (2000)

  • 03F05
  • 03B45