Skip to main content
Log in

Parameterized partition relations on the real numbers

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We consider several kinds of partition relations on the set \({\mathbb{R}}\) of real numbers and its powers, as well as their parameterizations with the set \({[\mathbb{N}]^{\mathbb{N}}}\) of all infinite sets of natural numbers, and show that they hold in some models of set theory. The proofs use generic absoluteness, that is, absoluteness under the required forcing extensions. We show that Solovay models are absolute under those forcing extensions, which yields, for instance, that in these models for every well ordered partition of \({\mathbb{R}^\mathbb{N}}\) there is a sequence of perfect sets whose product lies in one piece of the partition. Moreover, for every finite partition of \({[\mathbb{N}]^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}}\) there is \({X \in [\mathbb{N}]^{\mathbb{N}}}\) and a sequence \({\{P_{k} : k \in \mathbb{N}\}}\) of perfect sets such that the product \({[X]^{\mathbb{N}} \times \prod_{k}^{\infty}P_{k}}\) lies in one piece of the partition, where \({[X]^{\mathbb{N}}}\) is the set of all infinite subsets of X. The proofs yield the same results for Borel partitions in ZFC, and for more complex partitions in any model satisfying a certain degree of generic absoluteness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagaria J., Bosch R.: Solovay models and ccc forcing extensions. J. Symb. Log. 69, 742–766 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bagaria J., Bosch R.: Proper forcing extensions and Solovay models. Arch. Math. Log. 43, 739–750 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baumgartner, J.E.: Iterated forcing. In: Mathias, A.R.D. (ed.) Surveys in set theory. London Math. Soc. Lecture Note Series, vol. 87, pp. 1–59. Cambridge University Press, London (1983)

  4. Baumgartner J.E.: Sacks forcing and the total failure of Martin’s axiom. Topol. Appl. 19, 211–225 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Di Prisco, C.A.: Partition properties and perfect sets. In: Proceedings of the IX Latin American Symposium on Mathematical Logic. INMABB-CONICET. Universidad Nacional del Sur, Bahía Blanca, Argentina, pp. 119–127 (1993)

  6. Di Prisco C.A., Henle J.: Doughnuts, floating ordinals, square brackets and ultraflitters. J. Symb. Log. 65, 461–473 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Di Prisco C.A., Llopis J., Todorcevic S.: Parameterized partitions of products of finite sets. Combinatorica 24, 209–232 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Di Prisco C.A., Todorcevic S.: Perfect set properties in \({L(\mathbb{R})[U]}\) . Adv. Math. 139, 240–259 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Di Prisco C.A., Todorcevic S.: Suslin partition of products of finite sets. Adv. Math. 176, 172–183 (2003)

    Article  MathSciNet  Google Scholar 

  10. Jech T.: Set Theory. The Third Millennium Edition. Springer, Heidelberg (2002)

    Google Scholar 

  11. Judah H., Shelah S.: Souslin forcing. J. Symb. Log. 53, 1188–1207 (1988)

    Article  MathSciNet  Google Scholar 

  12. Kechris A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics. Springer, Heidelberg (1995)

    Google Scholar 

  13. Kechris A.S., Martin D.A.: A note on universal sets for classes of countable G δ’s. Mathematika 22(1), 43–45 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Larman D.G., Rogers C.A.: The descriptive character of certain universal sets. Proc. London Math. Soc. 27(3), 385–401 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mathias A.R.D.: Happy Families. Ann. Math. Log. 12(1), 59–111 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Miller A.W.: Infinite combinatorics and definability. Ann. Pure Appl. Log. 41(2), 179–203 (1989)

    Article  MATH  Google Scholar 

  17. Oxtoby J.C.: Measure and Category. A Survey of Analogies between Topological and Measure Spaces. Graduate Texts in Mathematics. Springer, Heidelberg (1971)

    Google Scholar 

  18. Pawlikowski J.: Parametrized Ellentuck Theorem. Topol. Appl. 37(1), 65–73 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sacks, G.: Forcing with perfect closed sets. In: Scott, D. (ed.) Axiomatic Set Theory. Proc. Symp. Pure Math., vol. 13, pp. 331–335. Am. Math. Soc. (1971)

  20. Shelah S.: Can you take Solovay inaccessible away?. Israel J. Math 48, 1–47 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Solovay R.: A model of set theory in which every set of reals is Lebesgue measurable. Ann. Math. 92, 1–56 (1970)

    Article  MathSciNet  Google Scholar 

  22. Stern J.: Regularity properties of definable sets of reals. Ann. Pure Appl. Log. 29(3), 289–324 (1985)

    Article  MATH  Google Scholar 

  23. Todorcevic, S.: Introduction to Ramsey Spaces. (in preparation)

  24. Truss J.: Models of set theory containing many perfect sets. Ann. Math. Log. 7, 197–219 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Bagaria.

Additional information

This work was supported by the research projects MTM 2005-01025 of the Spanish Ministry of Science and Education and 2005SGR-00738 of the Generalitat de Catalunya. A substantial part of the work was carried out while the second-named author was ICREA Visiting Professor at the Centre de Recerca Matemàtica in Bellaterra (Barcelona), and also during the first-named author’s stays at the Instituto Venezolano de Investigaciones Científicas and the California Institute of Technology. The authors gratefully acknowledge the support provided by these institutions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagaria, J., Di Prisco, C.A. Parameterized partition relations on the real numbers. Arch. Math. Logic 48, 201–226 (2009). https://doi.org/10.1007/s00153-009-0121-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-009-0121-y

Mathematics Subject Classification (2000)

Navigation