Skip to main content
Log in

Topological complexity of locally finite ω-languages

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Locally finite omega languages were introduced by Ressayre [Formal languages defined by the underlying structure of their words. J Symb Log 53(4):1009–1026, 1988]. These languages are defined by local sentences and extend ω-languages accepted by Büchi automata or defined by monadic second order sentences. We investigate their topological complexity. All locally finite ω-languages are analytic sets, the class LOC ω of locally finite ω-languages meets all finite levels of the Borel hierarchy and there exist some locally finite ω-languages which are Borel sets of infinite rank or even analytic but non-Borel sets. This gives partial answers to questions of Simonnet (Automates et Théorie Descriptive, Ph.D. Thesis. Université Paris 7, March 1992) and of Duparc et al. [Computer science and the fine structure of Borel sets. Theor Comput Sci 257(1–2):85–105, 2001].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Börger E., Grädel E., Gurevich Y.: The Classical Decision Problem. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  2. Büchi J.R., Landweber L.H.: Solving sequential conditions by finite state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969)

    Article  Google Scholar 

  3. Büchi J.R.: Weak second order arithmetic and finite automata. Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  4. Büchi, J.R.: On a decision method in restricted second order arithmetic, logic methodology and philosophy of science. In: Proceedings of the 1960 International Congress. Stanford University Press, pp. 1–11 (1962)

  5. Büchi J.R., Siefkes D.: The monadic second order theory of all countable ordinals, decidable theories 2. Lect. Notes Math. 328, 1–217 (1973)

    Article  Google Scholar 

  6. Chang, C.C., Keisler, H.J.: Model Theory, American Elsevier Publishing Company, Inc., New York (1973) (3rd edn., North Holland, Amsterdam, 1990)

  7. Duparc, J.: La Forme Normale des Boréliens de Rang Fini. Ph.D. Thesis, Université Paris 7 (1995)

  8. Duparc, J.: The Normal Form of Borel Sets, Part 1: Borel Sets of Finite Rank. Comptes Rendus de l’Académie des Sciences, Paris, t.320, Série 1, pp. 651–656 (1995)

  9. Duparc J.: Wadge hierarchy and Veblen hierarchy: Part 1: Borel sets of finite rank. J. Symb. Log. 66(1), 56–86 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duparc J., Finkel O., Ressayre J-P.: Computer science and the fine structure of Borel sets. Theor. Comput. Sci. 257(1–2), 85–105 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Engelfriet J., Hoogeboom H.J.: X-automata on ω-words. Theor. Comput. Sci. 110(1), 1–51 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Finkel, O.: Langages de Büchi et ω-Langages Locaux. Comptes Rendus de l’Académie des Sciences, Paris, t.309, Série 1, pp. 991–994 (1989)

  13. Finkel, O.: Théorie des Modèles des Formules Locales et Etude des Langages Formels qu’elles Définissent. Ph.D. Thesis, Université Paris 7 (1993)

  14. Finkel O., Ressayre J-P.: Stretchings. J. Symb. Log. 61(2), 563–585 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Finkel O.: Locally finite languages. Theor. Comput. Sci. 255(1–2), 223–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Finkel O.: Topological properties of omega context free languages. Theor. Comput. Sci. 262(1–2), 669–697 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Finkel, O.: Locally Finite ω-Languages and Borel Sets of Infinite Rank (preprint)

  18. Finkel O.: Closure properties of locally finite omega languages. Theor. Comput. Sci. 322(1), 69–84 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Finkel, O.: On decidability properties of local sentences. In: Proceedings of the 11th Workshop on Logic, Language, Information and Computation WoLLIC 2004. Electronic Notes in Theoretical Computer Science, vol. 123, pp. 75–92. Elsevier, Amsterdam (2005)

  20. Finkel O.: On decidability properties of local sentences. Theor. Comput. Sci. 364(2), 196–211 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hopcroft, J.E., Ullman, J.D.: Formal Languages and their Relation to Automata. Addison-Wesley Publishing Company, Reading (1969)

  22. Kechris A.S.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  23. Kuratowski K.: Topology. Academic Press, New York (1966)

    Google Scholar 

  24. Kechris A.S., Marker D., Sami R.L.: \({\Pi_1^1}\) Borel sets. J. Symb. Log. 54(3), 915–920 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Landweber L.H.: Decision problems for ω-automata. Math. Syst. Theory 3(4), 376–384 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lescow, H., Thomas, W.: Logical specifications of infinite computations. In: A Decade of Concurrency. de Bakker, J.W., et al. (eds.) Lecture Notes in Computer Science, vol. 803, pp. 583–621. Springer, Heidelberg (1994)

  27. Meyer, A.R.: Weak monadic second order theory of successor is not elementary recursive, logic colloquium (Boston, Mass., 1972–1973). Lecture Notes in Mathematics, vol. 453, pp. 132–154. Springer, Berlin (1975)

  28. Moschovakis Y.N.: Descriptive Set Theory. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  29. Parigot M., Pelz E.: A logical approach to Petri net languages. Theor. Comput. Sci. 39, 155–169 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  30. Perrin D., Pin J.-E.: Infinite words, automata, semigroups, logic and games. Pure and Applied Mathematics, vol. 141 . Elsevier, Amsterdam (2004)

    Google Scholar 

  31. Pin J-E.: Logic, semigroups and automata on words. Ann. Math. Artif. Intell. 16, 343–384 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ressayre J-P.: Formal languages defined by the underlying structure of their words. J. Symb. Log. 53(4), 1009–1026 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rogers H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  34. Safra, S.: Complexity of Automata on Infinite Objects. Ph.D. Thesis, Weizmann Institute of Science, Rehovot, Israel (1989)

  35. Shoenfield J.R.: Mathematical Logic. Addison-Wesley, Reading (1967)

    MATH  Google Scholar 

  36. Simonnet, P.: Automates et Théorie Descriptive. Ph.D. Thesis, Université Paris 7, March (1992)

  37. Simonnet, P.: Automate d’Arbres Infinis et Choix Borélien. Comptes Rendus de l’Académie des Sciences, Paris, t.316, Série 1, pp. 97–100, (1993)

  38. Staiger L. (1997) ω-Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol 3, pp. 339–388. Springer, Berlin (1997)

  39. Thomas W.: Automata on Infinite Objects. In: Van Leeuwen, J.(eds) Handbook of Theoretical Computer Science vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

    Google Scholar 

  40. Thomas W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A.(eds) Handbook of Formal Languages, vol. 3., pp. 389–456. Springer, Heidelberg (1997)

    Google Scholar 

  41. Wadge, W.W.: Reducibility and determinateness on the Baire space. Ph.D. Thesis, Berkeley (1983)

  42. Wagner K.: On omega regular sets. Inf. Control 43, 123–177 (1979)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Finkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkel, O. Topological complexity of locally finite ω-languages. Arch. Math. Logic 47, 625–651 (2008). https://doi.org/10.1007/s00153-008-0101-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-008-0101-7

Keywords

Mathematics Subject Classification (2000)

Navigation