Skip to main content
Log in

Effectively closed sets and enumerations

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

An effectively closed set, or \({\Pi^{0}_{1}}\) class, may viewed as the set of infinite paths through a computable tree. A numbering, or enumeration, is a map from ω onto a countable collection of objects. One numbering is reducible to another if equality holds after the second is composed with a computable function. Many commonly used numberings of \({\Pi^{0}_{1}}\) classes are shown to be mutually reducible via a computable permutation. Computable injective numberings are given for the family of \({\Pi^{0}_{1}}\) classes and for the subclasses of decidable and of homogeneous \({\Pi^{0}_{1}}\) classes. However no computable numberings exist for small or thin classes. No computable numbering of trees exists that includes all computable trees without dead ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binns, S.: Small \({\Pi^{0}_{1}}\) classes. Arch. Math. Logic 45(4), 393–410 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brodhead, P.: Enumerations of \({\Pi^{0}_{1}}\) classes: acceptability and decidable classes. In: Proceedings of CCA 2006, Gainesville, Elect. Notes in Th. Comp. Sci., Elsevier, Amsterdam (2006) (to appear, electronic)

  3. Brodhead, P.: Computable aspects of closed sets. Ph.D. Dissertation, University of Florida (2008)

  4. Cholak, P., Coles, R., Downey, R., Hermann, E.: Automorphisms of the lattice of \({\Pi^{0}_{1}}\) classes: perfect thin classes and anc degrees. Trans. Am. Math. Soc. 353, 4899–4924 (2001) (electronic)

    Article  MATH  Google Scholar 

  5. Cenzer, D., Downey, R., Jockusch, C., Shore, R.: Countable thin \({\Pi^{0}_{1}}\) classes. Ann. Pure App. Logic 59, 79–139 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cenzer, D.: \({\Pi^{0}_{1}}\) classes in computability theory. In: Griffor, E.R.(eds) Handbook of Computability Theory, pp. 37–85. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  7. Cenzer, D., Remmel, J.B.: Effectively Closed Sets, ASL Lecture Notes in Logic (to appear)

  8. Cenzer, D., Remmel, J.: Index sets for \({\Pi^{0}_{1}}\) classes. Ann. Pure App. Logic 93, 3–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cenzer, D., Remmel, J.: \({\Pi^{0}_{1}}\) classes in mathematics. In: Ershov, Y., Goncharov, S., Nerode, A., Remmel, J.(eds) Handbook of Recursive Mathematics, pp. 623–821. North-Holland, Amsterdam (1999)

    Google Scholar 

  10. Cenzer, D., Remmel, J.: Index sets for computable real functions. In: Proceedings of CCA 2003, Cincinnati, pp. 163–182 (2003)

  11. Downey, R., Jockusch, C., Stob, M.: Array nonrecursive sets of multiple permitting arguments. In: Ambos-Spies, K., Muller, G., Sacks, G.(eds) Recursion Theory Week: Proc. Ober. 1989, pp. 141–173. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  12. Downey, R.: Maximal theories. Ann. Pure App. Logic 33, 245–282 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ershov, Y.: Theory of numberings. In: Griffor, E.R.(eds) Handbook of Computability Theory, pp. 473–503. North-Holland, Amsterdam (1999)

    Chapter  Google Scholar 

  14. Friedberg, R.: Three theorems on recursive enumeration. J. Symb. Logic 23, 309–316 (1958)

    Article  MathSciNet  Google Scholar 

  15. Goncharov, S., Lempp, S., Solomon, R.: Friedburg numberings of families of n-computably enumerable sets. Algebra Logic 41, 81–86 (2002)

    Article  MathSciNet  Google Scholar 

  16. Hinman, P.: Recursion-Theoretic Hierarchies. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  17. Jockusch, C., Soare, R.: \({\Pi^{0}_{1}}\) classes and degrees of theories. Trans. Am. Math. Soc. 173, 35–56 (1972)

    Article  MathSciNet  Google Scholar 

  18. Lempp, S.: Hyperarithmetical index sets in recursion theory. Trans. Am. Math. Soc. 303, 559–583 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pour-El, M., Putnam, H.: Recursively enumerable classes and their application to recursive sequences of formal theories. Archiv Math. Logik Grund 8, 104–121 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  20. Raichev, A.: Relative Randomness via RK-Reducibility, Ph.D. Thesis, University of Wisconsin, Madison (2006)

  21. Rogers, H.: Gödel numberings of partial recursive functions. J. Symb. Logic 23, 331–341 (1958)

    Article  MathSciNet  Google Scholar 

  22. Rogers, H.: Theory of recursive functions and effective computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  23. Simpson, S.: Mass problems and randomness. Bull. Symb. Logic 11(1), 1–27 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

    Google Scholar 

  25. Solomon, R.: Thin classes of separating sets. Contemporary mathematics 425, pp 67–86. American Mathematical Society (2007)

  26. Suzuki, Y.: Enumerations of recursive sets. J. Symb. Logic 24, 311 (1959)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Cenzer.

Additional information

Research partially supported by National Science Foundation grants DMS 0554841, 0532644 and 0652732.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodhead, P., Cenzer, D. Effectively closed sets and enumerations. Arch. Math. Logic 46, 565–582 (2008). https://doi.org/10.1007/s00153-008-0065-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-008-0065-7

Mathematics Subject Classification (2000)

Navigation