Skip to main content
Log in

Schnorr trivial reals: a construction

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

A real is Martin-Löf (Schnorr) random if it does not belong to any effectively presented null \({\Sigma^0_1}\) (recursive) class of reals. Although these randomness notions are very closely related, the set of Turing degrees containing reals that are K-trivial has very different properties from the set of Turing degrees that are Schnorr trivial. Nies proved in (Adv Math 197(1):274–305, 2005) that all K-trivial reals are low. In this paper, we prove that if \({{\bf h'} \geq_T {\bf 0''}}\) , then h contains a Schnorr trivial real. Since this concept appears to separate computational complexity from computational strength, it suggests that Schnorr trivial reals should be considered in a structure other than the Turing degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaitin, G.J.: A theory of program size formally identical to information theory. J. Assoc. Comput. Mach. 22, 329–340 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Chaitin, G.J.: Algorithmic information theory. IBM J. Res. Develop. 21(4), 350–359 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Downey, R., Griffiths, E., Laforte, G.: On Schnorr and computable randomness, martingales, and machines. Math. Log. Q. 50(6), 613–627 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Downey, R., Hirschfeldt, D.R., Nies, A., Terwijn, S.A.: Calibrating randomness. Bull. Symb. Logic 12(3), 411–491 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Downey, R.G., Griffiths, E.J.: Schnorr randomness. J. Symb. Logic 69(2), 533–554 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Downey, R.G., Hirschfeldt, D.R., Nies, A., Stephan, F.: Trivial reals. In: Proceedings of the 7th and 8th Asian Logic Conferences, pp. 103–131. Singapore University Press, Singapore (2003)

  7. Franklin, J.N.Y.: Hyperimmune-free degrees and Schnorr triviality. Submitted

  8. Kjos-Hanssen, B., Nies, A., Stephan, F.: Lowness for the class of Schnorr random reals. SIAM J. Comput. 35(3), 647–657 (2005) (electronic)

    Article  MathSciNet  Google Scholar 

  9. Kučera, A.: Measure, \({\Pi^{0}_{1}}\) -classes and complete extensions of PA. In: Recursion theory week (Oberwolfach, 1984). Lecture Notes in Mathematics, vol. 1141, pp. 245–259. Springer, Berlin (1985)

  10. Martin-Löf, P.: The definition of random sequences. Inform. Control 9, 602–619 (1966)

    Article  Google Scholar 

  11. Miller, W., Martin, D.A.: The degrees of hyperimmune sets. Z. Math. Logik Grundlagen Math. 14, 159–166 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nies, A.: Lowness properties and randomness. Adv. Math. 197(1), 274–305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization and Turing degrees. J. Symb. Logic 70(2), 515–535 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schnorr, C.P.: A unified approach to the definition of random sequences. Math. Syst. Theory 5, 246–258 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Terwijn, S.A., Zambella, D.: Computational randomness and lowness. J. Symb. Logic 66(3), 1199–1205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna N. Y. Franklin.

Additional information

This material is based upon work supported under a National Science Foundation Graduate Research Fellowship and appears in the author’s Ph.D. thesis. A preliminary version of this paper appeared in Electronic Notes in Theoretical Computer Science

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franklin, J.N.Y. Schnorr trivial reals: a construction. Arch. Math. Logic 46, 665–678 (2008). https://doi.org/10.1007/s00153-007-0061-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-007-0061-3

Keywords

Mathematical Subject Classification (2000)

Navigation