Archive for Mathematical Logic

, Volume 46, Issue 5–6, pp 347–363 | Cite as

Normal forms for fuzzy logics: a proof-theoretic approach

  • Petr CintulaEmail author
  • George Metcalfe


A method is described for obtaining conjunctive normal forms for logics using Gentzen-style rules possessing a special kind of strong invertibility. This method is then applied to a number of prominent fuzzy logics using hypersequent rules adapted from calculi defined in the literature. In particular, a normal form with simple McNaughton functions as literals is generated for łukasiewicz logic, and normal forms with simple implicational formulas as literals are obtained for Gödel logic, Product logic, and Cancellative hoop logic.


Fuzzy logic Normal form Proof theory Hypersequents 

Mathematics Subject Classification (2000)

03B22 03B47 03B52 03B50 06F35 03G99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguzzoli, S.: Geometric and proof-theoretic issues in úukasiewicz propositional logics. Ph.D. Thesis, University of Siena, Siena (1998)Google Scholar
  2. 2.
    Avron A. (1987). A constructive analysis of RM. J. Symb. Logic 52(4): 939–951 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Avron A. and Konikowska B. (2001). Decomposition proof systems for Gödel–Dummett logics. Studia Logica 69(2): 197–219 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baaz, M., Fermüller, C.G.: Analytic calculi for projective logics. In: Murray, N. (ed.) Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX’99, Lecture Notes in Computer Science, vol. 1617, pp. 36–50. Springer, Saratoga Springs (1999)Google Scholar
  5. 5.
    Baaz M. and Veith H. (1999). Interpolation in fuzzy logic. Arch. Math. Logic 38(7): 461–489 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic foundations of many-valued reasoning. Trends in Logic, vol. 7. Kluwer, Dordercht (1999)Google Scholar
  7. 7.
    Cintula P. and Gerla B. (2004). Semi-normal forms and functional representation of product fuzzy logic. Fuzzy Sets Syst. 143(1): 89–110 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dershowitz N. and Manna Z. (1979). Proving termination with multiset orderings. Commun. Assoc. Comput. Mach. 22(8): 465–476 zbMATHMathSciNetGoogle Scholar
  9. 9.
    Di Nola A. and Lettieri A. (2004). On normal forms in Łukasiewicz logic. Arch. Math. Logic 43(6): 795–823 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hájek, P.: Metamathematics of fuzzy logic. Trends in Logic, vol.~4. Kluwer, Dordercht (1998)Google Scholar
  11. 11.
    Hájek P., Godo L., Esteva F. and Montagna F. (2003). Hoops and fuzzy logic. J. Logic Comput. 13(4): 532–555 CrossRefGoogle Scholar
  12. 12.
    McNaughton R. (1951). A theorem about infinite-valued sentential logic. J. Symb. Logic 16(1): 1–13 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Metcalfe G., Olivetti N. and Gabbay D. (2004). Analytic proof calculi for product logics. Arch. Math. Logic 43(7): 859–889 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Metcalfe G., Olivetti N. and Gabbay D. (2005). Sequent and hypersequent calculi for Abelian and Łukasiewicz logics. ACM Trans. Comput. Logic 6(3): 578–613 CrossRefMathSciNetGoogle Scholar
  15. 15.
    Mundici D. (1994). A constructive proof of McNaughton’s Theorem in infinite-valued logics. J. Symb. Logic 59(2): 596–602 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Novák V., Perfilieva I. and Močkoř J. (2000). Mathematical Principles of Fuzzy Logic. Kluwer, Dordrecht Google Scholar
  17. 17.
    Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT Press, Amsterdam (2001)Google Scholar
  18. 18.
    Rose A. and Rosser J. (1958). Fragments of many-valued statement calculi. Trans. Ame. Math. Soc. 87: 1–53 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Department ofMathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations