Skip to main content
Log in

Failures of SCH and Level by Level Equivalence

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We construct a model for the level by level equivalence between strong compactness and supercompactness in which below the least supercompact cardinal κ, there is a stationary set of cardinals on which SCH fails. In this model, the structure of the class of supercompact cardinals can be arbitrary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apter A. (1997) Patterns of compact cardinals. Ann. Pure Appl. Log. 89, 101–115

    Article  MathSciNet  MATH  Google Scholar 

  2. Apter A. (2001) Some structural results concerning supercompact cardinals. J. Symb. Log. 66, 1919–1927

    Article  MathSciNet  MATH  Google Scholar 

  3. Apter A. (2003) Failures of GCH and the level by level equivalence between strong compactness and supercompactness. Math. Log. Q. 49, 587–597

    Article  MathSciNet  MATH  Google Scholar 

  4. Apter A. (2005) An Easton theorem for level by level equivalence. Math. Log. Q. 51, 247–253

    Article  MathSciNet  MATH  Google Scholar 

  5. Apter A., Cummings J. (2000) Identity crises and strong compactness. J. Symb. Log. 65, 1895–1910

    Article  MathSciNet  MATH  Google Scholar 

  6. Apter A., Cummings J. (2001) Identity crises and strong compactness II: strong cardinals. Arch. Math. Log. 40, 25–38

    Article  MathSciNet  MATH  Google Scholar 

  7. Apter A., Hamkins J.D. (2002) Indestructibility and the level-by-level agreement between strong compactness and supercompactness. J. Symb. Log. 67, 820–840

    Article  MathSciNet  MATH  Google Scholar 

  8. Apter A., Shelah S. (1997) On the strong equality between supercompactness and strong compactness. Trans. Am. Math. Soc. 349, 103–128

    Article  MathSciNet  MATH  Google Scholar 

  9. Cummings J., Foreman M., Magidor M. (2001) Squares, scales, and stationary reflection. J. Math. Log. 1, 35–98

    Article  MathSciNet  MATH  Google Scholar 

  10. Gitik M. (1986) Changing cofinalities and the nonstationary ideal. Isr. J. Math. 56, 280–314

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamkins J.D. (1999) Gap forcing: generalizing the Lévy-Solovay Theorem. Bull. Symb. Log. 5, 264–272

    Article  MathSciNet  MATH  Google Scholar 

  12. Hamkins J.D. (2000) The lottery preparation. Ann. Pure Appl. Log. 101, 103–146

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamkins J.D. (2001) Gap forcing. Isr. J. Math. 125, 237–252

    Article  MathSciNet  MATH  Google Scholar 

  14. Jech T. (2003) Set Theory: The Third Millennium Edition, Revised and Expanded. Springer, Berlin, Heidelberg. New York

    MATH  Google Scholar 

  15. Kanamori A. (1994) The Higher Infinite. Springer, Berlin, Heidelberg, New York

    MATH  Google Scholar 

  16. Ketonen J. (1972) Strong compactness and other cardinal sins. Ann. Math. Log. 5, 47–76

    Article  MathSciNet  MATH  Google Scholar 

  17. Kunen, K. Set Theory: An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics 102, North-Holland, Amsterdam (1980)

  18. Lévy A., Solovay R. (1967) Measurable cardinals and the continuum hypothesis. Isr. J. Math. 5, 234–248

    Article  MATH  Google Scholar 

  19. Menas T. (1974) On strong compactness and supercompactness. Ann. Math. Log. 7, 327–359

    Article  MathSciNet  Google Scholar 

  20. Solovay, R. Strongly compact cardinals and the GCH. In: Proceedings of the Tarski Symposium Proceedings of Symposia in Pure Mathematics 25, American Mathematical Society, Providence, pp. 365–372 (1974)

  21. Solovay R., Reinhardt W., Kanamori A. (1978) Strong axioms of infinity and elementary embeddings. Ann. Math. Log. 13, 73–116

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur W. Apter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apter, A.W. Failures of SCH and Level by Level Equivalence. Arch. Math. Logic 45, 831–838 (2006). https://doi.org/10.1007/s00153-006-0006-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-006-0006-2

Keywords

Mathematics Subject Classification (2000)

Navigation