Hate at first sight? Dynamic aspects of the electoral impact of migration: the case of Ukip


In this paper, we test the hypothesis that the causal effect of immigrant presence on anti-immigrant votes is a short-run effect. For this purpose, we consider a distributed lag model and adapt the standard instrumental variable approach proposed by Altonji and Card (1991) to a dynamic framework. The evidence from our case study, votes for the UK Independent Party (Ukip) in recent European elections, supports our hypothesis. Furthermore, we find that this effect is robust to differences across areas in terms of population density and socioeconomic characteristics, and it is only partly explained by integration issues.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    http://www.motherjones.com/kevin-drum/2016/11/support-trump-strongest-where- illegal-immigration-lowest; http://www.nytimes.com/2016/11/11/opinion/identity-over- ideology.html

  2. 2.


  3. 3.

    See https://www.theguardian.com/politics/2016/jun/16/nigel-farage-defends-ukip-breaking-point-poster-queue-of-migrants.

  4. 4.

    In Appendix 1, we discuss the effect of such misspecification on the parameters’ estimation and how it can explain some of the paradoxes in the literature.

  5. 5.

    It is useful to recall that although panel data estimations, namely, estimations with a within estimator, of the standard specification without lag of Eq. 1 provide estimates of the effects of variations of x on variations of y, the underlying relation that they estimate is the effect of the level of xi, t on the level of yi, t. In contrast, the panel estimations of Eq. 3 would provide estimates of the effects of variations and acceleration of x on the variations in y.

  6. 6.

    From such a perspective, the AIC and BIC test the specifications with only one lag corresponding to the second, fifth and last raw numbers in Table 3, which can be interpreted as a test of the best specification for the length of the “hate at first sight” effect.

  7. 7.

    Refer to, for example, Beine et al. (2011) and Mayda (2010).

  8. 8.

    A similar identification strategy can also be found in Bianchi et al. (2012).

  9. 9.


  10. 10.


  11. 11.


  12. 12.


  13. 13.


  14. 14.



  1. Abbondanza G, Bailo F (2018) The electoral payoff of immigration flows for anti-immigration parties: the case of Italy’s Lega Nord. Eur Polit Sci 17:378–403

    Article  Google Scholar 

  2. Allport GW (1954) The nature of prejudice. Addison-Wesley, Oxford

    Google Scholar 

  3. Altonji JG, Card D (1991) The effects of immigration on the labor market outcomes of less-skilled natives. In: Abowd JM, Freeman RB (eds) Immigration, trade and the labor market. University of Chicago Press, pp 201–234

  4. Arrow K (1971) The theory of discrimination. Discrimination Labor Markets 3(10):3–33

    Google Scholar 

  5. Barone G, D’Ignazio A, De Blasio G, Naticchioni P (2016) Mr. Rossi, Mr. Hu and politics. The role of immigration in shaping natives’ voting behavior. J Public Econ 136:1–13

    Article  Google Scholar 

  6. Bartel AP (1989) Where do the new U.S. immigrants live? J Labor Econ 7(4):371–391

    Article  Google Scholar 

  7. Bauer T, Epstein GS, Gang IN (2007) The influence of stocks and flows on migrants’ location choices. Res Labor Econ 26:199–229

    Article  Google Scholar 

  8. Becker SO, Fetzer T (2016) Does migration cause extreme voting?. Center for Competitive Advantage in the Global Economy and The Economic & Social Research Council

  9. Becker SO, Fetzer T, Novy D (2017) Who voted for Brexit? A comprehensive district-level analysis. Econ Policy 32(92):601–650

    Article  Google Scholar 

  10. Beine M, Docquier F, Özden Ç (2011) Diasporas. J Dev Econ 95(1):30–41

    Article  Google Scholar 

  11. Bianchi M, Buonanno P, Pinotti P (2012) Do immigrants cause crime? J Eur Econ Assoc 10(6):1318–1347

    Article  Google Scholar 

  12. Borjas GJ (2006) Native internal migration and the labor market impact of immigration. J Hum Resour 41(2):222–258

    Google Scholar 

  13. Brunner B, Kuhn A (2018) Immigration, cultural distance and natives’ attitudes towards immigrants: evidence from Swiss voting results. Kyklos 71(1):28–58

    Article  Google Scholar 

  14. Card D, Di Nardo J (2000) Do immigrant inflows lead to native outflows? Am Econ Rev 90(2):360–367

    Article  Google Scholar 

  15. Card D, Dustmann C, Preston I (2005) Understanding attitudes to immigration: the migration and minority module of the first European Social Survey. CDP Discussion Paper Series 03/05, Centre for Research and Analysis of Migration, University of London

  16. Card D, Dustmann C, Preston I (2012) Immigration, wages, and compositional amenities. J Eur Econ Assoc 10(1):78–119

    Article  Google Scholar 

  17. Cesur R, Mocan N (2018) Education, religion, and voter preference in a Muslim country. J Popul Econ 31(1):1–44

    Article  Google Scholar 

  18. Colantone I, Stanig P (2018) Global competition and Brexit. Am Pol Sci Rev 112(2):201–2018

    Article  Google Scholar 

  19. Cortés P, Pan J (2014) Foreign nurse importation and the supply of native nurses. J Health Econ 37:164–180

    Article  Google Scholar 

  20. Dustmann C, Preston I (2007) Racial and economic factor in attitudes to immigration. BE J Econ Anal Policy (Contributions) 7(1):1–39

    Google Scholar 

  21. Dustmann C, Vasiljeva K, Damm AP (2018) Refugee migration and electoral outcomes. Rev Econ Stud:rdy047

  22. Epstein GS, Heizler-Cohen OH (2016) The formation of networks in the diaspora. Int J Manpow 37(7):1136–1153

    Article  Google Scholar 

  23. Facchini G, Mayda AM (2009) Does the welfare state affect individual attitudes toward immigrants? Evidence across countries. Rev Econ Stat 91(2):295–314

    Article  Google Scholar 

  24. Halla M, Wagner AF, Zweimüller J (2017) Immigration and voting for the far right. J Eur Econ Assoc 15(6):1341–1385

    Article  Google Scholar 

  25. Harmon NA (2018) Immigration, ethnic diversity, and political outcomes: evidence from Denmark. Scand J Econ 120(4):1043–1074

    Article  Google Scholar 

  26. Immerzeel T, Pickup M (2015) Populist radical right parties mobilizing ‘the people’? The role of populist radical right success in voter turnout. Elect Stud 40:347–360

    Article  Google Scholar 

  27. Jaeger DA, Ruist J, Stuhler J (2018) Shift-share instruments and the impact of immigration. NBER Working Paper No.24285

  28. King G (1997) A solution to the ecological inference problem. Princeton University Press, Princeton

    Google Scholar 

  29. Mayda AM (2006) Who is against immigration? A cross-country investigation of individual attitudes toward immigrants. Rev Econ Stat 88(3):510–530

    Article  Google Scholar 

  30. Mayda AM (2010) International migration: a panel data analysis of the determinants of bilateral flows. J Popul Econ 23(4):1249–1274

    Article  Google Scholar 

  31. Mayda AM, Peri G, Steingress W (2016) Immigration to the US: a problem for the republicans or the democrats? NBER Working Paper No.21941

  32. Mendez I, Cutillas IM (2014) Has immigration affected Spanish presidential elections results? J Popul Econ 27(1):135–171

    Article  Google Scholar 

  33. Otto AH, Steinhardt MF (2014) Immigration and election out-comes—evidence from city districts in Hamburg. Reg Sci Urban Econ 45:67–79

    Article  Google Scholar 

  34. Peri G, Sparber C (2011) Assessing inherent model bias: an application to native displacement in response to immigration. J Urban Econ 69:82–91

    Article  Google Scholar 

  35. Pesaran MH (2007) A simple panel unit root test in the presence of cross-section dependence. J Appl Econ 22(2):265–312

    Article  Google Scholar 

  36. Rotte R, Steininger M (2009) Crime, unemployment, and xenophobia? An ecological analysis of right-wing election results in Hamburg, 1986-2005. Rev Reg Res 29:29–63

    Google Scholar 

  37. Scheve KF, Slaughter MJ (2001) Labor market competition and individual preferences over immigration policy. Rev Econ Stat 83(1):133–145

    Article  Google Scholar 

  38. Slotwinski M, Stutzer A (2019) The deterrent effect of an anti-minaret vote on foreigners’ location choices. J Popul Econ 32:1043–1095

    Article  Google Scholar 

  39. Steinmayr A (2016) Exposure to refugees and voting for the far-right: (Unexpected) results from Austria. IZA Discussion Papers 9790

  40. Stockemer D (2017) The success of radical right-wing parties in Western European regions–new challenging findings. J Contemp Eur Stud 25(1):41–56

    Article  Google Scholar 

  41. Vertier P, Viskanic M (2018) Dismantling the “jungle”: migrant relocation and extreme voting in France. CESifo Working paper 6927

  42. Viskanic M (2017) Fear and loathing on the campaign trail: did immigration cause Brexit?. https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=2941611

Download references


We thank Christian Dustmann, Carlo De Villanova, Edoardo Di Porto, Tommaso Frattini, Majlinda Joxhe, Fabrizio Mazzonna, Paolo Naticchioni, and Jackie Wabha for their comments and suggestions. A previous version of this work has been presented to the “International Conference on Migration and Welfare” (Sapienza University of Rome), “3rd Workshop on the Economics of Migration” (Southampton University), “LUMSA Economics Seminars” (LUMSA University), “The Economics of Post-Factual Democracy Conference” (University of Copenhagen), “The Law of Economics of Migration and Mobility Conference” (University of Bern), “Workshop on Recent Developments on Migration Issues” (BETA, Luxembourg), and to the INEQ Research Group meeting (Sapienza University of Rome). We are grateful to all the participants for their useful hints. We thank the editor Klaus F. Zimmermann and two anonymous referees for their comments and suggestions that led to a considerable improvement of the paper. A slightly different version of this work circulated under the title “Hate at first sight? Dynamic aspects of the electoral impact of migration: The case of UK and Brexit” as a SPRU Working Paper. The usual disclaimer applies.

Author information



Corresponding author

Correspondence to Eugenio Levi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Klaus F. Zimmermann


Appendix 1. Biases of mis-specified lag structures

$$ {y}_{i,t}=\alpha +\beta {x}_{i,t}+{\gamma w}_{it}+{\varepsilon}_{it} $$

If instead the true relationship has a dynamic dimension, such a model is mis-specified since a more general case of Eq. 1 should be considered. The consistent estimator \( \hat{\beta} \) for the parameter β of Eq. 5 would be a consistent estimator of the parameter β0 of the true model in Eq. 1 only if there is no serial correlation of x; thus, we can consider each lag as a different omitted variable which does not affect the correlation with the error term. A lack of serial correlation is clearly not so for the case of the immigration level variable. Conversely, if the xi, t serial correlation is 1, the estimated coefficient \( \hat{\beta} \) estimated would be a consistent estimator of the sum of all the coefficients β0, β1, . . , βL since the lags of x converge in plim to x. The unit root test that we performed confirms that this scenario is also not the case for immigration in the UK. In all other cases, the estimated \( \hat{\beta} \) would be a consistent estimator of a linear combination of the true parameters β0, β1, . . , βL with weight given by the serial correlation of x with each specific lag l. In cases in which the coefficients may have different signs, as the one of this paper, the estimated \( \hat{\beta} \) could also have the opposite sign of both the “true” coefficient β0 and the sum of all coefficients.

In our specific case, since the effect of new flows is different from the effect of overall immigration, the bias of the estimations of the overall effect of immigration will be higher when flows and stock are less correlated, that is, when there is a process of change in the location of migrants. The sensitivity of the results to the large city/country found in the literature that we have considered in Sect. 2 could be the result of the different effect of immigration in new, rather than the oldest, destinations of migration.

Appendix 2. Identification of OLS and IV estimations in the case of Eqs. 2 and 3

The finite lag model can be interpreted as a nonlinear case based on the lag operator. Using Wooldridge’s (2010, pg. 342) notation, we can write the following:

$$ y=m\left(x,{\boldsymbol{\theta}}_{\mathbf{0}}\right)+u=\alpha +{\beta}^0x+\theta g(x)+u $$

where using the lag operator L (which maps xt onto xt − l), the function g(x) is equal to Lx for Eq. 2 and to (1 − L)x for Eq. 3. Since the specifications are linear in the parameters (the lag operator is an algebraic function), if we have an instrument zt for xt at any t ∈ (1 − l; 1; …; T − l; T), we can rely on standard 2SLS estimations by adding g(z) as instrument for g(x) (ibid pg. 235). It is analogous to the linear case of two distinct endogenous variables instrumented with two distinct instruments.

Regarding the identification conditions, the order condition is satisfied since we have in each equation the number of excluded endogenous variables, and the number of included exogenous ones corresponds; however, for the rank condition, the dynamic relation between the instruments impose a further condition. Indeed, the covariance matrix of the estimator is given in the two cases of Eqs. 2 and 3, respectively, by the following:

$$ \left[\begin{array}{cc}{x}_t^{\prime }{z}_t& {x}_t^{\prime }{z}_{t-l}\\ {}{x}_{t-l}^{\prime }{z}_t& {x}_{t-l}^{\prime }{z}_{t-l}\end{array}\right] $$
$$ \left[\begin{array}{cc}{x}_t^{\prime }{z}_t& {x}_t^{\prime}\left({z}_t-{z}_{t-l}\right)\\ {}\left({x}_t-{x}_{t-l}\right)^{\prime }{z}_t& \left({x}_t-{x}_{t-l}\right)^{\prime}\left({z}_t-{z}_{t-l}\right)\end{array}\right] $$

If one of the two variables x and z has unit roots, in both cases, the expectation and the plim of this matrix would not have full ranks. In the case in Eq. 7, the rows or the column would correspond; in the second case, one column or one raw number would be null.

Appendix 3. Results using the specification in Eq. 2

We report in Table 12 an alternative version of Table 6 with regressions on the original FDL specification in Eq. 2. By construction, the coefficient of the lagged immigrant share is equal to the opposite of the coefficient of the flows in Table 6, while the coefficient of the first raw number is equal to the sum of the coefficients of the two first raw numbers in Table 6. While standard errors change, the results are all confirmed.

Table 12 Main results using the original FDL specification in Eq. 2

Appendix 4. Regressions by population density

In this appendix, we report the underlying regressions to the Figs. 7 and 8 on the average marginal effects of the immigrant share and of the immigration flows. In column (1), in order to reproduce previous findings, we change our model by removing the immigration flows and by adding the interaction term of the immigrant share with the population density (as a continuous variable); in column (2), we add an interaction term of the immigration flows too.

Table 13 Regressions with the interaction terms with the population density

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levi, E., Mariani, R.D. & Patriarca, F. Hate at first sight? Dynamic aspects of the electoral impact of migration: the case of Ukip. J Popul Econ 33, 1–32 (2020). https://doi.org/10.1007/s00148-019-00746-5

Download citation


  • Immigration
  • Voting
  • Political economy

JEL codes

  • P16
  • J61
  • D72