Journal of Population Economics

, Volume 21, Issue 3, pp 751–776 | Cite as

Ceilings or floors? Gender wage gaps by education in Spain

  • Sara de la Rica
  • Juan J. Dolado
  • Vanesa Llorens


This paper analyzes the gender gap throughout the wage distribution in Spain using data from the European Community Household Panel. Quantile regression and panel data techniques are used to estimate wage regressions. In contrast with the steep increasing pattern found in other countries, the flatter evolution of the Spanish gender gap hides an intriguing composition effect. For highly educated workers, in line with the conventional glass ceiling hypothesis, the gap increases as we move up the distribution. However, for less-educated workers the gap decreases. We label this novel fact as a floor pattern and argue that it can be explained by statistical discrimination exerted by employers in countries where less-educated women have low participation rates.


Gender gap Floor pattern Quantile regressions 

JEL Classification

J16 J71 



We would like to thank three anonymous referees, an Editor, M. Arellano, S. Bentolila, F. Felgueroso, J. Gardeazábal, M. Jansen, B. Petrongolo, seminar participants at Amsterdam, Marseille, País Vasco (Bilbao), Toulouse, CEMFI, CES, ECARES, ESEM 2004 (Madrid) and SAE 2004 (Pamplona). Special thanks go to C. García-Peñalosa for her insightful comments and suggestions. The first two authors gratefully acknowledge financial support from the Spanish Ministry of Education (SEC2003-04826; SEC2004-04101) and the EC (MRTN-CT-2003-50496).


  1. Abadie A (1997) Changes in the Spanish labor income structure during the 1980’s: a quantile regression approach. Investigaciones Económicas 21:253–272Google Scholar
  2. Albrecht J et al (2003) Is there a glass ceiling in Sweden? J Labor Econ 21:145–177CrossRefGoogle Scholar
  3. Albrecht J et al (2004) Decomposing the gender wage gap in the Netherlands with sample selection adjustments. Mimeo, IZA Discussion Papers No. 1400Google Scholar
  4. Acemoglu D, Pischke JS (1998) Why do firms train: theory and evidence. Q J Econ 113:79–111CrossRefGoogle Scholar
  5. Arellano M, Bover O (1995) Female labour force participation in the 1980s: the case of Spain. Investigaciones Económicas 29:171–194Google Scholar
  6. Blau F, Kahn L (2000) Gender differences in pay. J Econ Perspect 14:75–99CrossRefGoogle Scholar
  7. Booth A et al (2003) A sticky floors model of promotion, pay and gender. Eur Econ Rev 47:295–322CrossRefGoogle Scholar
  8. Buchinsky M (1994) Changes in the U. S. wage structure 1963–1987: an application of quantile regression. Econometrica 62:405–458CrossRefGoogle Scholar
  9. Buchinsky M (1998a) Recent advances in quantile regression models: a practical guideline for empirical research. J Hum Resour 33:88–126CrossRefGoogle Scholar
  10. Buchinsky M (1998b) The dynamics of changes in the female wage distribution in the USA: a quantile regression approach. J Appl Econ 13:1–30CrossRefGoogle Scholar
  11. Chamberlain G (1994) Quantile regression, censoring and the structure of wages. In: Sims CA (ed) Advances in econometrics, Sixth World Congress, vol. 1, Cambridge University Press, Cambridge, UKGoogle Scholar
  12. de la Rica S et al (2005) Ceilings and floors: gender wage gaps by education in Spain. IZA DP no. 1483Google Scholar
  13. Dolado JJ et al (2002) Drawing lessons from the boom of temporary jobs in Spain. Econ J 112:270–295CrossRefGoogle Scholar
  14. Dolado JJ et al (2004) Where do women work?: analyzing patterns in occupational segregation by gender. Ann Econ Stat 71–72:293–315Google Scholar
  15. Farber H, Gibbons R (1996) Learning and wage dynamics. Q J Econ 111:1007–1047CrossRefGoogle Scholar
  16. Fitzberger B et al (eds) (2001) Economic applications of quantile regression. Physica-VerlagGoogle Scholar
  17. García J et al (2001) How wide is the gap? an investigation of gender wage differences using quantile regression. Empir Econ 26:149–168CrossRefGoogle Scholar
  18. Gardeazábal J, Ugidos A (2005) Gender wage discrimination at quantiles. J Popul Econ 18:165–179CrossRefGoogle Scholar
  19. Instituto de la Mujer (2005) Estudio sobre la Conciliación de la Vida Familiar y la Vida laboral en España: Situación Actual, Necesidades y Demanda, MTAS., March 2005
  20. Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50CrossRefGoogle Scholar
  21. Koenker R, Bassett G (1982) Robust tests for heteroskedasticity on regression quantiles. Econometrica 50:43–61CrossRefGoogle Scholar
  22. Lazear E, Rosen S (1990) Male–female wage differentials in job ladders. J Labor Econ 8:106–123CrossRefGoogle Scholar
  23. Machado JAF, Mata J (2005) Counterfactual decomposition of changes in wage distributions using quantile regression. J Appl Econ 20:445–465CrossRefGoogle Scholar
  24. Newell A, Reilly B (2001) The gender pay gap in the transition from communism: some empirical evidence. Econ Syst 25:287–304CrossRefGoogle Scholar
  25. OECD (2002) Women at work: who are they and how are they faring? Employment Outlook, pp 63–125Google Scholar
  26. Olivetti C, Petrongolo B (2005) Unequal pay or unequal employment?: a cross-country analysis of gender gaps (mimeo)Google Scholar
  27. Parzen M et al (1994) A resampling method based on pivotal estimating functions. Biometrika 81:341–350CrossRefGoogle Scholar
  28. Polacheck S (1981) Occupational self-selection: a human capital approach to sex differences in occupational structure. Rev Econ Stat 62:60–69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sara de la Rica
    • 1
    • 4
  • Juan J. Dolado
    • 2
    • 4
    • 5
  • Vanesa Llorens
    • 3
  1. 1.Universidad del País VascoBilbaoSpain
  2. 2.Universidad Carlos IIIGetafe MadridSpain
  3. 3.LECG Consulting Spain S.LMadridSpain
  4. 4.Institute for the Study of Labor (IZA)BonnGermany
  5. 5.Center for Economic Policy ResearchLondonUK

Personalised recommendations