Skip to main content

Advertisement

Log in

Political instability, gender discrimination, and population growth in developing countries

  • Origianl Paper
  • Published:
Journal of Population Economics Aims and scope Submit manuscript

Abstract

This paper introduces gender discrimination and population growth into a model of political economy. The government keeps up the military for the sake of political instability in the country. It is shown that if the risk of internal conflicts is high, then the government needs a bigger military and a larger supply of young men for it. The government is then willing to boost population growth by keeping women outside the production (e.g. neglecting their education or restricting their movement). Some empirical evidence on the interdependence of political instability, population growth, and gender discrimination is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In our theory, we consider the military per population for simplicity. Naturally, population consists of many groups that are not potential rebels, so that the military per labor force is more relevant in empirics.

  2. Caldwell (1982) claims that the import of western values together with goods and services tends to decrease population growth. Bongaarts and Cotts (1996) also emphasize the role of diffusion of information. An alternative explanation for the role of trade was provided by Haaparanta (2004) who argued that, in some cases, trade forces people in a poor country to specialize on agriculture and move back to the countryside where population grows faster, so that trade opening increases population growth.

  3. We excluded Rwanda, China, and Jordan for 1989 (an outlier in terms of military).

  4. The test results 1,834 for the Lagrange multiplier and 197 for the Hausman test favor FEM over OLS and the random effect model.

  5. The role of female literacy rate is important. To see this, take the marginal effect of FEMLIT in regression 2, the means in Appendix B, and the initial population 2.41 billion. We then see that with a unit increase in FEMLIT, population should be 12.7 million lower in 1999. To produce the same result, the military share should almost be halved. Note also that the coefficient for logGDP, which was positive and highly significant in OLS, becomes completely exhausted by country-specific fixed effects.

  6. The correlation between MILPERS and MILEXP is 0.60, between MILPERS and AUTOC 0.24, and between MILEXP and AUTOC 0.23. The data for autocracy come from the University of Maryland’s State Failure Project (Marshall and Jaggers 2002), and the data for military expenditure come from the World Bank (2004).

References

  • Azam J-P (1995) How to pay the peace? A theoretical framework with references to African countries. Public Choice 83:173–184

    Article  Google Scholar 

  • Azam J-P (2003) Civil war and social contract. Public Choice 115:455–475

    Article  Google Scholar 

  • Barro RJ, Sala-i-Martin X (1995) Economic growth. McGraw-Hill, New York, USA

    Google Scholar 

  • Becker GS (1981) A treatise on the family. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Bongaarts J, Cotts WS (1996) Social interactions and contemporary fertility transitions. Popul Dev Rev 22:639–682

    Article  Google Scholar 

  • Brander J, Taylor MS (1998) The simple economics of Easter island: Ricardo–Malthus model of renewable resource use. Am Econ Rev 88:119–138

    Google Scholar 

  • Caldwell JC (1982) Theory of fertility decline. Academic, London, UK

    Google Scholar 

  • CIA (1995) The world factbook 1995. http://www.odci.gov/cia/publications/95fact

  • Collier P, Hoeffer A (1998) On economic causes of civil wars. Oxf Econ Pap 50:563–573

    Article  Google Scholar 

  • Easterly W, Levine R (1997) Africa’s growth tragedy: policies and ethnic division. Q J Econ 4:1203–1250

    Google Scholar 

  • Eriksson M, Wallensteen P (2004) Armed conflicts. J Peace Res 41:625–636

    Article  Google Scholar 

  • Grossman HI (1991) A general equilibrium model of insurrections. Am Econ Rev 81:912–921

    Google Scholar 

  • Grossman HI (1995) Insurrections. In: Hartley K, Sandler T (eds) Handbook of defence economics, vol I. Elsevier, Amsterdam, Netherlands

  • Grossman HI, Kim M (1995) Swords or plowshares? A theory of the security of claims to property. J Polit Econ 103:1275–1288

    Article  Google Scholar 

  • Haaparanta P (2004) International trade, resource curse and demographic transition. Discussion Paper No 11, HECER, Helsinki, Finland

  • Henderson EA, Singer JD (2000) Civil war in the post-colonial world, 1946–92. J Peace Res 37:275–299

    Article  Google Scholar 

  • Heston A, Summers R, Aten B (2002) Penn world table version 6.1. Center for International Comparisons at the University of Pennsylvania (CICUP), USA

  • Howitt P (2000) Endogenous growth and cross country differences. Am Econ Rev 90:829–846

    Article  Google Scholar 

  • Human Rights Watch (2002) From the household to the factory: sex discrimination in the Guatemala labor force. USA

  • Lehmijoki U (2003) Demographic transition and economic growth. PhD thesis, Yliopistopaino, Helsinki, Finland

  • Marshall MG, Gurr TR (2005) Peace and conflict. Center for International Development and Conflict Management, University of Maryland, USA, http://www.cidcm.umd.edu

  • Marshall MG, Jaggers K (2002) Polity IV project. Dataset user’s manual. University of Maryland, USA

  • Maxwell J, Reuveny R (2000) Resource scarcity and conflict in developing countries. J Peace Res 37:301–322

    Article  Google Scholar 

  • Olsson O (2004) Conflict diamonds. A paper presented in the ninth conference of dynamics, economic growth, and international trade (DEGIT), Reykjavik, Iceland, June 11–12, 2004

  • Palivos T (1995) Endogenous fertility, multiple growth paths, and economic convergence. J Econ Dyn Control 19:1489–1510

    Article  Google Scholar 

  • Phillips J, Hossain MB (2003) The impact of household delivery of family planning services on Women’s status in Bangladesh. Int Fam Plann Perspect 29:139–145

    Article  Google Scholar 

  • Razin A, Ben-Zion U (1975) An intergenerational model of population growth. Am Econ Rev 65:923–933

    Google Scholar 

  • Seager J (2003) The atlas of women. Women’s Press, London, UK

    Google Scholar 

  • US Census Bureau (2005) Global population profile 2002. http://www.census.gov/ips/www/idbnew.html/

  • World Bank (2004) World development indicators 2004. http://www.worldbank.org/data/wdi2004/

  • World Bank (2005) Gender in MNA. Washington DC, USA

Download references

Acknowledgements

The authors would like to thank Arne Bigsten, Eric Strobl, B. Quattara, Heikki Kauppi, and two anonymous referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapio Palokangas.

Additional information

Responsible editor: Gil S. Epstein

Appendices

Appendix A

Given m=ξn, the first-order conditions (Eqs. 2224) are equivalent to

$$\frac{{\partial {\user1{\mathcal{H}}}}}{{\partial c}} = c^{{ - \sigma }} - \mu = 0,$$
(28)
$$\frac{{\partial {\user1{\mathcal{H}}}}}{{\partial n}} = \delta n^{{ - \sigma }} - \mu {\left[ {\frac{1}{\gamma }F_{3} {\left( {k,\frac{1}{2} - \xi n,\frac{1}{2} - \frac{n}{\gamma }} \right)} + k} \right]} + \xi {\left[ {\frac{\psi }{{{\left( {\xi n} \right)}^{\sigma } }} - \mu F_{2} {\left( {k,\frac{1}{2} - \xi n,\frac{1}{2} - \frac{n}{\gamma }} \right)}} \right]} = 0.$$
(29)

In the steady state, variables c, n, k, and \(\mu = c^{{ - \sigma }} \) are kept constant. Noting \({\mathop k\limits^. } = {\mathop \mu \limits^. } = 0\) and the Hamiltonian (Eq. 19), conditions 18 and 20 can then be written as follows:

$$\frac{{\partial {\user1{\mathcal{H}}}}}{{\partial k}} = \mu {\left[ {F_{1} {\left( {k,\frac{1}{2} - \xi n,\frac{1}{2} - \frac{n}{\gamma }} \right)} - n} \right]}\mu = \mu \rho ,$$
(30)
$$\frac{{\partial {\user1{\mathcal{H}}}}}{{\partial \mu }} = F{\left( {k,\frac{1}{2} - \xi n,\frac{1}{2} - \frac{n}{\gamma }} \right)} - c - nk = 0.$$
(31)

In the system (Eqs. 2831) of four equations, variables c, n, k, and μ are endogenous and ψ is exogenous. Differentiating this system totally, we obtain

$${\left[ {\begin{array}{*{20}c} {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{ - 1}} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{ - F3/\gamma - k - \xi F_{2} }} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial k^{2} }}}} & {0} \\ {{ - 1}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} & {\rho } & {0} \\ \end{array} } \right]}{\left[ {\begin{array}{*{20}c} {{{\text{d}}c}} \\ {{{\text{d}}n}} \\ {{{\text{d}}k}} \\ {{{\text{d}}\mu }} \\ \end{array} } \right]} + {\left[ {\begin{array}{*{20}c} {0} \\ {{\xi ^{{1 - \sigma }} n^{{ - \sigma }} }} \\ {0} \\ {0} \\ \end{array} } \right]}{\text{d}}\psi = 0.$$
(32)

Because the Hamiltonian \({\user1{\mathcal{H}}}\) was assumed to be concave in (c, m, n, k), then it must be concave in (c, n, k) as well with m=ξn. Noting the constraint (Eq. 31), this implies

$${\left| {\begin{array}{*{20}c} {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{ - 1}} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial k^{2} }}}} & {0} \\ {{ - 1}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} & {0} & {0} \\ \end{array} } \right|} < 0.$$
(33)

Given this and the properties of the production function (Eq. 12), we obtain the Jacobian of the system 32 as follows:

$$\begin{aligned} & {\user1{\mathcal{J}}} = \,{\left| {\begin{array}{*{20}c} {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{ - 1}} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial k^{2} }}}} & {0} \\ {{ - 1}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} & {\rho } & {0} \\ \end{array} } \right|} \\ & = \,{\left| {\begin{array}{*{20}c} {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{ - 1}} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial k^{2} }}}} & {0} \\ {{ - 1}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} & {0} & {0} \\ \end{array} } \right|} \\ & \,\,\,\,\,\, + \,{\left| {\begin{array}{*{20}c} {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{ - 1}} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial k^{2} }}}} & {0} \\ {0} & {0} & {\rho } & {0} \\ \end{array} } \right|} \\ & < - \rho \,{\left| {\begin{array}{*{20}c} {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c^{2} }}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{ - 1}} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n^{2} }}}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {0} \\ \end{array} } \right|} \\ & = - \rho {\left| {\begin{array}{*{20}c} {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c^{2} }}}} & {0} & {{ - 1}} \\ {0} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n^{2} }}}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} \\ {0} & {{ - F_{{12}} - F_{{13}} /\gamma - 1}} & {0} \\ \end{array} 0} \right|} \\ & = \rho {\underbrace {\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c^{2} }}}_{ - }}{\underbrace {{\left[ {\xi F_{{12}} + F_{{13}} /\gamma + 1} \right]}}_{ + }}{\underbrace {{\left[ {F_{3} /\gamma + k + \xi F_{2} } \right]}}_{ + }} < 0. \\ \end{aligned} $$

Now, by the comparative statics of the system 32, we obtain

$$\begin{aligned} & \frac{{\partial n}}{{\partial \psi }} = - \frac{1}{{\user1{\mathcal{J}}}}\,{\left| {\begin{array}{*{20}c} {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c^{2} }}}} & {0} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {{ - 1}} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial n}}}} & {{\xi ^{{1 - \sigma }} n^{{ - \sigma }} }} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial n\partial k}}}} & {{ - F_{3} /\gamma - k - \xi F_{2} }} \\ {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {0} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial k^{2} }}}} & {0} \\ {{ - 1}} & {0} & {\rho } & {0} \\ \end{array} } \right|} \\ & \,\,\,\,\,\, = - \frac{{\xi ^{{1 - \sigma }} n^{{ - \sigma }} }}{{\user1{\mathcal{J}}}}{\left| {\begin{array}{*{20}c} {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial c\partial k}}}} & {0} & {{ - 1}} \\ {0} & {{\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial k^{2} }}}} & {0} \\ {{ - 1}} & {\rho } & {0} \\ \end{array} } \right|} = {\underbrace {\frac{{\xi ^{{1 - \sigma }} n^{{ - \sigma }} }}{{\user1{\mathcal{J}}}}}_{ - }}{\underbrace {\frac{{\partial ^{2} {\user1{\mathcal{H}}}}}{{\partial k^{2} }}}_{ - }} > 0, \\ \end{aligned} $$

Appendix B

Countries (sample 69): Algeria, Argentina, Bangladesh, Benin, Bolivia, Botswana, Brazil, Burundi, Cameroon, Central African Republic, Chad, Chile, Colombia, Congo (Rep.), Costa Rica, Cote d’Ivore, Dominican Republic, Ecuador, El Salvador, Ghana, Guatemala, Haiti, Honduras, India, Indonesia, Iran, Jamaica, Jordan, Kenya, Laos, Lesotho, Malawi, Malaysia, Mali, Mauritius, Mexico, Mongolia, Morocco, Mozambique, Namibia, Nepal, Nicaragua, Niger, Nigeria, Oman, Pakistan, Panama, Paraguay, Peru, Philippines, Saudi Arabia, Senegal, South Africa, Sri Lanka, Swaziland, Syria, Tanzania, Thailand, Togo, Trinidad and Tobago, Tunisia, Turkey, Uganda, Uruguay, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmijoki, U., Palokangas, T. Political instability, gender discrimination, and population growth in developing countries. J Popul Econ 19, 431–446 (2006). https://doi.org/10.1007/s00148-005-0045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00148-005-0045-8

Keywords

JEL Classification

Navigation