Skip to main content
Log in

Two good reasons for an angiotensin-II type 1 receptor blockade with losartan after cardiac transplantation: reduction of incidence and severity of transplant vasculopathy

  • Original Article
  • Published:
Transplant International

Abstract

Despite considerable progress in immunosuppressive therapy, the incidence and severity of transplant vasculopathy (TVP) after cardiac transplantation have not declined. The renin–angiotensin system (RAS) plays a pivotal role in the proliferation of vascular smooth muscle cells (VSMCs) contributing to TVP. We compared the effects of an angiotensin-II blocker, losartan (AT1 blocker), and an angiotensin-converting enzyme (ACE) inhibitor, enalapril, on the incidence of diseased vessels and the severity of experimental TVP in the Lewis-to-Fischer rat heterotopic heart transplantation model. Recipients were randomly divided into six groups, group 1: no therapy, group 2: 3 mg/kg per day cyclosporine (CyA) s.c., group 3: CyA and 10 mg/kg per day losartan p.o., group 4: CyA and 40 mg/kg per day enalapril p.o., and groups 5 and 6: as groups 3 and 4, but additionally pre-treated with losartan or enalapril 7 days prior to transplantation. Eighty days after grafting, we assessed the incidence and severity of TVP, expressed as percentage of diseased vessels and mean vessel occlusion (MVO), by digitizing morphometry. CyA and CyA/enalapril post-treatment significantly reduced MVO, compared with controls, but not the incidence. Additional reduction of MVO was achieved in CyA/enalapril pre-treatment and both CyA/losartan pre- and post-treatment groups when compared with CyA and untreated controls. However, only losartan post-treatment in combination with CyA reduced both incidence and MVO. Our results validate the important role of the RAS in neointimal proliferation after cardiac transplantation. Losartan appears to be superior to enalapril in preventing TVP after experimental cardiac transplantation. Therefore, AT1 blockade with losartan might be a therapeutic option for the prevention of TVP in human heart recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Adams DH, Tilney NL, Collins IJ, Karnowsky MJ (1992) Experimental graft arteriosclerosis. I. The Lewis-to-Fischer F344 allograft model. Transplantation 53:1115–1119

    CAS  PubMed  Google Scholar 

  2. Alexander RW, Gimbrone MAJ (1976) Stimulation of prostaglandin E synthesis cultured in human umbilical vein smooth muscle cells. Proc Natl Acad Sci U S A 73:1617–1620

    CAS  PubMed  Google Scholar 

  3. Balcells E, Meng QC, Johnson WH Jr, Oparil S, Dell'Italia LJ (1997) Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species consideration. Am J Physiol 273:H1769–H1774

    CAS  PubMed  Google Scholar 

  4. Bastien NR, Servant MJ, Gutkowska J, Meloche S, Lambert C (1999) Downregulation of cardiac AT1 receptor expression and angiotensin II concentrations after long-term blockade of the renin–angiotensin system in cardiomyopathic hamsters. J Cardiovasc Pharmacol 34:402–406

    Article  CAS  PubMed  Google Scholar 

  5. Berridge MJ, Irvine RF (1998) Inositol phosphatases and cell signaling. Nature 341:197–205

    Google Scholar 

  6. Billingham ME, Cary NR, Hammond ME, Kemnitz J, Marboe C, McCallister HA, Snovar DC, Winters GL, Zerbe A (1990) A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection. Heart Rejection Study Group. J Heart Transplant 9:587–593

    CAS  PubMed  Google Scholar 

  7. De Nucci G, Warner T, Vane JR (1988) Effect of captopril on the bradykinin-induced release of prostacyclin from guinea pig lung or bovine aortic endothelial cell. Br J Pharmacol 95:783–788

    PubMed  Google Scholar 

  8. Diet F, Pratt RR, Berry GJ, Momose N, Gibbons GH, Dzau VJ (1996) Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 94:2756–2767

    CAS  PubMed  Google Scholar 

  9. Dubey RK, Jackson EK, Lüscher TF (1995) Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell: role of cyclic-nucleotides and angiotensin I receptor. J Clin Invest 96:141–149

    CAS  PubMed  Google Scholar 

  10. Dzau VJ (1993) Local expression and pathobiological role of renin–angiotensin in the blood vessels and heart. Basic Res Cardiol 1:1–14

    Google Scholar 

  11. Ehlers MRW, Riordan JF (1989) Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry 28:5311–5318

    CAS  PubMed  Google Scholar 

  12. Farhy RD, Carretero OA, Ho KL, Scicli AG (1993) Role of kinins and nitric oxide in the effects of angiotensin converting enzyme inhibitors on neointima formation. Circ Res 72:1202–1210

    CAS  PubMed  Google Scholar 

  13. Gräfe M, Auch-Schwelk W, Zakrzewicz A, Regitz-Zagrosek V, Bartsch P, Graf K, Loebe M, Gaehtgens P, Fleck E (1997) Angiotensin II-induced leukocyte adhesion on human coronary endothelial cells is mediated by E-selectin. Circ Res 81:804–811

    PubMed  Google Scholar 

  14. Inagami T, Guo DF, Kitami Y (1994) Molecular biology of angiotensin II receptors: an overview. J Hypertens Suppl 12:S83–S94

    CAS  PubMed  Google Scholar 

  15. Janiak P, Pillon A, Prost JF, Vilaine JP (1992) Role of angiotensin subtype 2 receptor in neointima formation after vascular injury. Hypertension 20:737–745

    Google Scholar 

  16. Jard S, Cantau B, Jacobs KH (1981) Angiotensin II and α-adrenergic agonists inhibit liver adenylate cyclase. J Biol Chem 256:2603–2606

    CAS  PubMed  Google Scholar 

  17. Jelsema CL, Moss J, Manganiello VC (1985) Effect of bradykinin on prostaglandin production by human skin fibroblasts in culture. Methods Enzymol 109:480–503

    CAS  PubMed  Google Scholar 

  18. Johnson DE, Gao SZ, Schroeder JS, DeCampli WM, Billingham ME (1989) The spectrum of coronary artery pathologic findings in human cardiac allografts. J Heart Transplant 8:349–359

    CAS  PubMed  Google Scholar 

  19. Johnston CI (2000) Angiotensin II type 1 receptor blockade: a novel therapeutic concept. Blood Press Suppl 1:9–13

    Article  CAS  PubMed  Google Scholar 

  20. Kauffman RF, Bean JS, Zimmerman KM, Brown RF, Steinberg MI (1991) Losartan, a nonpeptide angiotensin II (Ang II) receptor antagonist, inhibits neointima formation following balloon injury to rat carotid arteries. Life Sci 49:PL223–PL228

    CAS  PubMed  Google Scholar 

  21. Kim S, Izumi Y, Yano M, Hamaguchi A, Miura K, Yamanaka S, Miyazaki H, Iwao H (1998) Angiotensin blockade inhibits activation of mitogen-activated protein kinases in rat balloon-injured artery. Circulation 97:1731–1737

    CAS  PubMed  Google Scholar 

  22. Kitami Y, Okura T, Marumoto K, Wakamiya R, Hiwada K (1992) Differential gene expression and regulation of type 1 angiotensin II receptor subtypes in the rat. Biochem Biophys Res Commun 188:446–452

    CAS  PubMed  Google Scholar 

  23. Kobayashi J, Crawford SE, Backer CL, Zales VR, Takami H, Hsueh C, Huang C, Mavroudis C (1993) Captopril reduces graft coronary artery disease in a rat heterotopic transplant model. Circulation 88:1286–1290

    Google Scholar 

  24. Lassegue B, Alexander RW, Clark M, Griendling KK (1991) Angiotensin II-induced phosphatidylcholine hydrolysis in cultured vascular smooth muscle cells. Regulation and localization. Biochem J 276:19–25

    CAS  PubMed  Google Scholar 

  25. Liao DF, Duff JL, Daum G, Pelech SL, Berk BC (1996) Angiotensin II stimulates MAP kinase activity in vascular smooth muscle cells, role of Raf. Circ Res 97:1007–1014

    Google Scholar 

  26. Naftilan AJ, Ryan TJ, Pratt RE, Dzau VJ (1991) Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall. J Clin Invest 87:1300–1311

    CAS  PubMed  Google Scholar 

  27. Needleman P, Marshall GR, Sobel BE (1975) Hormone interaction in the isolated rabbit heart. Synthesis and coronary vasomotor effects of prostaglandins, angiotensin, and bradykinin. Circ Res 37:802–808

    CAS  PubMed  Google Scholar 

  28. Neish AS, Loh E, Schoen FJ (1992) Myocardial changes in cardiac transplant-associated coronary arteriosclerosis: potential for timely diagnosis. J Am Coll Cardiol 19:586–592

    CAS  PubMed  Google Scholar 

  29. Ono K, Lindsey ES (1969) Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg 547:225–228

    Google Scholar 

  30. Pascoe EA, Barnhart GR, Carter WH Jr, Thompson JA, Hess ML, Hastillo A, Szentpetery S, Lower RR (1991) The prevalence of cardiac allograft arteriosclerosis. Transplantation 44:838–839

    Google Scholar 

  31. Powell JS, Clozel JP, Müller RKM, Kuhn H, Hefti F, Hosang M, Baumgartner HR (1989) Inhibitors of the angiotensin-converting enzyme prevent myointimal injury after vascular injury. Science 245:186–188

    CAS  PubMed  Google Scholar 

  32. Rakugi H, Duk-Kyung K, Krieger JE, Wang DS, Dzau VJ, Pratt RE (1994) Induction of angiotensin-converting enzyme in the neointima after vascular injury: possible role in restenosis. J Clin Invest 93:339–346

    CAS  PubMed  Google Scholar 

  33. Richter M, Richter H (2000) Heart transplantation in rats. In: Radacic M, Basic I, Eljuga D (eds) Pokusni modeli u biomedicini. Medicinska Naklada, Zagreb, pp 37–51

  34. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    CAS  PubMed  Google Scholar 

  35. Smith JB (1986) Angiotensin-receptor signaling in cultured vascular smooth muscle cells. Am J Physiol 250:F759–F769

    CAS  PubMed  Google Scholar 

  36. Su E, Lombardi DM, Siegal J, Schwartz SM (1998) Angiotensin II induces vascular smooth muscle cell replication independent of blood pressure. Hypertension 31:1331–1337

    CAS  PubMed  Google Scholar 

  37. Szabo A, Lutz J, Schleimer K, Antus B, Hamar P, Philipp T, Heemann U (2000) Effect of angiotensin-converting enzyme inhibitors on growth factor mRNA in chronic allograft rejection in the rat. Kidney Int 57:982–991

    Article  CAS  PubMed  Google Scholar 

  38. Urata H, Boehm KD, Philip A, Kinoshita A, Gabrovsek J, Bumpus FM (1993) Cellular localization and regional distribution of an angiotensin II-forming chymase in the heart. J Clin Invest 91:1269–1281

    CAS  PubMed  Google Scholar 

  39. Van Kesteren CA, van Heugten HA, Lamers JM, Saxena PR, Schalekamp MA, Danser AH (1997) Angiotensin II-mediated growth and antigrowth effects in cultured neonatal rat cardiac myocytes and fibroblasts. J Mol Cell Cardiol 29:2147–2157

    Google Scholar 

  40. Viswanathan M, Stromberg C, Seltzer A, Saavedra JM (1992) Balloon angioplasty enhances the expression of angiotensin II AT1 receptors in neointima of the rat aorta. J Clin Invest 90:1707–1712

    CAS  PubMed  Google Scholar 

  41. Weinstock JV, Blum AM, Kassab JT (1987) Angiotensin II is chemotactic for a T-cell subset which can express migration inhibition factor activity in murine schistosomiasis mansoni. Cell Immunol 107:180–187

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus H. C. Richter.

About this article

Cite this article

Richter, M.H.C., Richter, H.R., Olbrich, H.G. et al. Two good reasons for an angiotensin-II type 1 receptor blockade with losartan after cardiac transplantation: reduction of incidence and severity of transplant vasculopathy. Transpl Int 16, 26–32 (2003). https://doi.org/10.1007/s00147-002-0506-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00147-002-0506-x

Keywords

Navigation