As the technology, research and policy communities continue to seek new ways to improve governance and solve public problems, two new important assets are occupying increasing importance: data and connected people. Leveraging data and people’s expertise in new ways offers a path forward for smarter decisions, more innovative policymaking, and more accountability in governance (Verhulst 2017). Yet, unlocking the value of these two assets not only requires increased availability and accessibility of those assets (through, for instance, open data or open innovation), it also requires innovation in methodology and technology.
The first of these innovations involves Artificial Intelligence (AI). AI offers unprecedented abilities to quickly process vast quantities of data that can provide data-driven insights to address public needs (Ng 2015). This is the role it has for example played in New York City, where FireCast, leverages data from across the city government to help the Fire Department identify buildings with the highest fire risks (Rielan 2015). AI is also considered to improve education, through the creation of virtual tutors and improved learner self-direction and assessment (Kurshan 2016); urban transportation, through predictive analytics on stresses to transport infrastructure like train equipment (Basu 2016); humanitarian aid, through improved understanding of refugees’ demographics and the resultant targeting of resources (Smith 2017); and combat corruptionFootnote 1, by modeling optimal, legitimate government service delivery strategies, and eventually automating the delivery of some government services. Artificial intelligence is also being used to deliver personalized health treatments, provide psychological support to Syrian refugees through the use of chatbots, improve the accessibility of internet content for people with visual impairments, more accurately predicting crop yields through the automated analysis of satellite imagery, and more (Castro and New 2016).
The second area is Collective Intelligence (CI). Although it receives less attention than AI, CI offers similar potential breakthroughs in changing how we govern, primarily by creating a means for tapping into the “wisdom of the crowd” and allowing groups to create better solutions than even the smartest experts working in isolation could ever hope to achieve. For example, in several countries patients’ groups (Nicholas and Broadbent 2015) are coming together to create new knowledge (Addario 2017) and health treatments (Weiner 2014) based on their experiences and accumulated expertise. Similarly, scientists are engaging citizens in new ways to tap into their expertise or skills, generating citizen science (Wynn 2017)—ranging from mapping our solar systemFootnote 2 by inviting whoever interested to help NASA make maps of scientifically interesting features in our Solar System, to manipulating enzyme modelsFootnote 3 in a game-like fashion, where people can get involved in an online puzzle video game, and eventually the highest scoring solutions are analyzed by researchers.
Neither AI nor CI offer panaceas for all our ills; they each pose certain challenges, and even risks. The effectiveness and accuracy of AI relies substantially on the quality of the underlying dataFootnote 4 as well as the human-designed algorithms used to analyze that data (Verhulst 2017). Given AI’s reliance on “training data” to inform automated decision-making, the collection, processing, sharing, analysis, or use of low quality data can derail the effectiveness of AI implementations, and any inaccuracies or challenges arising from low quality data are likely to compound over the course of this data life cycle. Among other challenges, it is becoming increasingly clear how biases against minorities and other vulnerable populations can be built into these algorithms. For instance, some AI-driven platforms for predicting criminal recidivism significantly over-estimate the likelihood that black defendants will commit additional crimes in comparison to white counterparts (Mattu et al. 2016). The need for incused algorithmic scrutiny is increasingly recognized, with a growing literatureFootnote 5 (Srinivasan et al. 2017) on the topic examining issues related to algorithms used by information intermediaries, governance challenges, tools for the transparency and accountability of algorithms, and studies of particularly opaque and harmful uses of algorithms in the consumer finance and criminal justice realms. While the literature is indeed growing, the field has not yet found clear and widely implementable solutions to the challenges posed by our increasing reliance on algorithmic decision-making, and those challenges are only likely to grow as we move toward more and broader use of AI.
In theory, CI avoids some of the risks of bias and exclusion present in a number of the implementations of AI to date, because it is specifically designed to bring more (diverse) voices into a conversation. But ensuring that the multiplicity of voices adds value, not just noise, can be an operational and ethical challenge (Standing and Standing 2017). Questions still remain both regarding how to effectively surface the most useful and relevant and expertise during crowdsourcing or collective intelligence efforts, and how to ensure, for example, that the often free labor provided by participating individuals is not handled in a exploitative manner. As it stands, effectively and ethically identifying the signal in the noise in CI initiatives can be time-consuming and resource intensive, especially for smaller organizations or groups lacking resources or technical skills.
Despite these challenges, however, there exists a significant degree of optimism – evidenced by, for example, Nesta CEO Geoff Mulgan’s recent book Big Mind: How Collective Intelligence Can Change Our World (Mulgan 2017), and MIT professor Max Tegmark’s Life 3.0: Being Human in the Age of Artificial Intelligence (Tegmar 2017)—surrounding both these new approaches to problem-solving. Some of this enthusiasm is likely hype, with AI and CI representing “shiny objects” that are believed capable of solving many if not all of the world’s problems. Some of this enthusiasm, however, is merited—CI and AI do offer very real potential for rapidly bringing more evidence and perspectives to bear for decision-making and problem-solving processes, and the task facing both policymakers, practitioners and researchers is to find ways of harnessing that potential in a way that maximizes benefits while limiting possible harms.
In what follows, I argue that one potential avenue for addressing the challenges facing the impactful and ethical use of AI and CI described above may involve a greater interaction between AI and CI.
These two areas of innovation have largely evolved and been researched separately until now.Footnote 6 However, I believe that there is substantial scope for integration, and mutual reinforcement. It is when harnessed together, as complementary methods and approaches, that AI and CI can bring the full weight of technological progress and modern data analytics to bear on our most complex, pressing problems.
To deconstruct the above statement, I propose three premises toward establishing a necessary research agenda on the intersection of AI and CI that can build more inclusive and effective approaches to governance innovation. As opposed to more traditional “government”, governance innovation refers to the idea that increased availability and use of data, new ways to leverage the capacity, intelligence, and expertise of people in the problem-solving process, combined with new advances in technology and science can transform governance.