, Volume 33, Issue 3, pp 413–424 | Cite as

Anthropomorphism in social robotics: empirical results on human–robot interaction in hybrid production workplaces

  • Anja RichertEmail author
  • Sarah Müller
  • Stefan Schröder
  • Sabina Jeschke
Open Forum


New forms of artificial intelligence on the one hand and the ubiquitous networking of “everything with everything” on the other hand characterize the fourth industrial revolution. This results in a changed understanding of human–machine interaction, in new models for production, in which man and machine together with virtual agents form hybrid teams. The empirical study “Socializing with robots” aims to gain insight especially into conditions of development and processes of hybrid human–machine teams. In the experiment, human–robot actions and interactions were closely observed in a virtual environment. Robots as partners differed in shape and behavior (reliable or faulty). Participants were instructed to achieve an objective that could only be achieved via close teamwork. This paper unites different aspects from core disciplines of social robotics and psychology contributing to anthropomorphization with the empirical insights of the experiment. It focuses on the psychological effects (e.g. reactions of different personality types) on anthropomorphization and mechanization, taking the inter- and transdisciplinary field of social robotics as a starting point.


Anthropomorphism Social robotics Industry 4.0 Cyber-physical-systems Lightweight robotics Collaboration Human–machine interaction Personality Problem solving behavior 



The research and development project SoWiRo is funded by the Start-up Grant of the RWTH Aachen. The research and development project ARIZ is Co-funded by the German Federal Ministry of Education and Research (BMBF) within the “Innovations for Tomorrow’s Production, Services, and Work” Program (funding number 02L14Z000) and managed by the Project Management Agency Karlsruhe (PTKA). The authors are responsible for the content of this publication.


  1. Bartneck C, Kulić D, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1(1):71–81. doi: 10.1007/s12369-008-0001-3 CrossRefGoogle Scholar
  2. Beier G (1999) Kontrollüberzeugungen im Umgang mit Technik. Report Psychologei 9:684–693Google Scholar
  3. Billard A, Dautenhahn K (1997) Grounding communication in situated, social robots. Technical Report, The University of EdinburghGoogle Scholar
  4. Borghi AM, Caruana F (2015) Embodiment theory. In: Wright JD (ed) International encyclopedia of the social & behavioral sciences, 2nd edn. Elsevier, Amsterdam, pp 420–426CrossRefGoogle Scholar
  5. Breazeal CL (2002) Designing sociable robots. Intelligent robots and autonomous agents. MIT Press, CambridgeGoogle Scholar
  6. Brooks RA (1990) Elephants don’t play chess. Robot Auton Syst 6(1–2):3–15. doi: 10.1016/S0921-8890(05)80025-9 CrossRefGoogle Scholar
  7. Brooks RA (1999) Cambrian intelligence: the early history of the new AI. MIT Press, LondonzbMATHGoogle Scholar
  8. Chandrasekaran C, Lemus L, Ghazanfar AA (2013) Dynamic faces speed up the onset of auditory cortical spiking responses during vocal detection. Proc Natl Acad Sci USA 110(48):E4668–E4677. doi: 10.1073/pnas.1312518110 CrossRefGoogle Scholar
  9. Chrisley R (2003) Embodied artificial intelligence. Artif Intell 149(1):131–150. doi: 10.1016/S0004-3702(03)00055-9 CrossRefGoogle Scholar
  10. Eliade M (1981) A history of religious ideas, volume 1: from the stone age to the Eleusinian mysteries, New edn. University of Chicago PressGoogle Scholar
  11. Epley N, Waytz A, Cacioppo JT (2007) On seeing human: a three-factor theory of anthropomorphism. Psychol Rev 114(4):864–886. doi: 10.1037/0033-295X.114.4.864 CrossRefGoogle Scholar
  12. Ferber J (1999) Multi-agent systems: an introduction to distributed artificial intelligence. Addison-Wesley, New YorkGoogle Scholar
  13. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42(3–4):143–166. doi: 10.1016/S0921-8890(02)00372-X CrossRefzbMATHGoogle Scholar
  14. Fussell SR (ed) (1998) Social and cognitive approaches to interpersonal communication. Erlbaum, MahwahGoogle Scholar
  15. Goetz J, Kiesler S, Powers A (2003) Matching robot appearance and behavior to tasks to improve human–robot cooperation. In: Proceedings of the 12th IEEE workshop on robot and human interactive communication, pp 55–60Google Scholar
  16. Goldstein EB, Gegenfurtner K, Neuser-von Oettingen K (eds) (2015) Wahrnehmungspsychologie: Der Grundkurs, 9. Aufl. Lehrbuch. Springer, BerlinGoogle Scholar
  17. Hancock PA, Billings DR, Schaefer KE, Chen JYC, de Visser EJ, Parasuraman R (2011) A meta-analysis of factors affecting trust in human–robot interaction. Hum Factors 53(5):517–527. doi: 10.1177/0018720811417254 CrossRefGoogle Scholar
  18. Hanson D (2006) Exploring the aesthetic range for humanoid robots. In: Proceedings of the ICCS/CogSci-2006 long symposium: toward social mechanisms of android science, Vancouver, BC, pp 39–42Google Scholar
  19. Hart SG (2006) Nasa-Task Load Index (NASA-TLX); 20 years later. Proc Hum Factors Ergon Soc Annu Meet 50(9):904–908. doi: 10.1177/154193120605000909 CrossRefGoogle Scholar
  20. Helton WS, Näswall K (2015) Short Stress State Questionnaire. Eur J Psychol Assess 31(1):20–30. doi: 10.1027/1015-5759/a000200 CrossRefGoogle Scholar
  21. Hinds PJ, Roberts TL, Jones H (2004) Whose job is it anyway? A study of human–robot interaction in a collaborative task. Hum Comp Interact 1(19):151–181CrossRefGoogle Scholar
  22. Huang Y-C, Wu K-Y, Liu Y-T (2013) Future home design: an emotional communication channel approach to smart space. Pers Ubiquit Comput 17(6):1281–1293. doi: 10.1007/s00779-012-0635-x CrossRefGoogle Scholar
  23. Jentsch E (1997) On the psychology of the uncanny (R. Sellars, Trans.). Angelaki 2(1):7–16. doi: 10.1080/09697259708571910 (Original work published in 1906) CrossRefGoogle Scholar
  24. Kauffeld S, Frieling E (2001) Der Fragebogen zur Arbeit im Team (F-A-T). Zeitschrift für Arbeits- und Organisationspsychologie A&O 45(1):26–33. doi: 10.1026//0932-4089.45.1.26 CrossRefGoogle Scholar
  25. Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator Sickness Questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3(3):203–220. doi: 10.1207/s15327108ijap0303_3 CrossRefGoogle Scholar
  26. Keysers C, Gazzola V (2010) Social neuroscience: mirror neurons recorded in humans. Curr Biol 20(8):R353–R354. doi: 10.1016/j.cub.2010.03.013 CrossRefGoogle Scholar
  27. Kiesler S, Hinds P (2004) Introduction to this special issue on human–robot interaction. Hum Comp Interact 1–2(19):1–8CrossRefGoogle Scholar
  28. Landwehr JR, McGill AL, Herrmann A (2011) It’s got the look: the effect of friendly and aggressive “facial” expressions on product liking and sales. J Mark 75(3):132–146. doi: 10.1509/jmkg.75.3.132 CrossRefGoogle Scholar
  29. Lencer R, Keedy SK, Reilly JL, McDonough BE, Harris MSH, Sprenger A, Sweeney JA (2011) Altered transfer of visual motion information to parietal association cortex in untreated first-episode psychosis: implications for pursuit eye tracking. Psychiatry Res 194(1):30–38. doi: 10.1016/j.pscychresns.2011.06.011 CrossRefGoogle Scholar
  30. Lewis M, Haviland-Jones JM, Feldman Barret L (eds) (2010) Handbook of emotions, 3rd edn. Guilford Press, New YorkGoogle Scholar
  31. MacDorman KF, Ishiguro H (2006) The uncanny advantage of using androids in cognitive and social science research. Interact Stud 7(3):297–337. doi: 10.1075/is.7.3.03mac CrossRefGoogle Scholar
  32. Mori M (1970) The uncanny valley. Energy 7(4):33–35Google Scholar
  33. Mori M, MacDorman K, Kageki N (2012) The uncanny valley [from the field]. IEEE Robot Automat Mag 19(2):98–100. doi: 10.1109/MRA.2012.2192811 CrossRefGoogle Scholar
  34. Murphy RR, Rogers E (2004) Introduction to the special issue on human–robot interaction. IEEE Trans Syst Man Cybern C 34(2):101–102. doi: 10.1109/TSMCC.2004.826271 CrossRefGoogle Scholar
  35. Nejat G, Sun Y, Nies M (2009) Assistive robots in health care settings. Home Health Care Manag Pract 21(3):177–187. doi: 10.1177/1084822308325695 CrossRefGoogle Scholar
  36. Nomura T, Kanda T, Suzuki T, Kato K (2004) Psychology in human–robot communication: an attempt through investigation of negative attitudes and anxiety toward robots 35–40. doi: 10.1109/ROMAN.2004.1374726
  37. Pak R, Fink N, Price M, Bass B, Sturre L (2012) Decision support aids with anthropomorphic characteristics influence trust and performance in younger and older adults. Ergonomics 55(9):1059–1072. doi: 10.1080/00140139.2012.691554 CrossRefGoogle Scholar
  38. Palopoli L, Argyros A, Birchbauer J, Colombo A, Fontanelli D, Legay A, Garulli A, Giannitrapani A, Macii D, Moro F, Nazemzadeh P, Padeleris P, Passerone R, Poier G, Prattichizzo D, Rizano T, Rizzon L, Scheggi S, Sedwards S (2015) Navigation assistance and guidance of older adults across complex public spaces: the DALi approach. Intell Serv Robot 8(2):77–92. doi: 10.1007/s11370-015-0169-y CrossRefGoogle Scholar
  39. Pfeifer R, Bongard J (2007) How the body shapes the way we think: a new view of intelligence. A Bradford book. MIT, CambridgeGoogle Scholar
  40. Piaget J (1978) Identität und Invarianzbegriff. In: Inhelder B, Chipman H (eds) Von der Kinderwelt zur Erkenntnis der Welt. Akademische Verlagsgesellschaft, Wiesbaden, pp 115–127Google Scholar
  41. Plutchik R, Kellerman H (1983) Emotions in early development. Emotion, theory, research, and experience, vol 2. Academic Press, New YorkGoogle Scholar
  42. Prassler E, Lawitzky G, Stopp A, Grunwald G, Hägele M, Dillmann R, Iossifidis I (eds) (2005) Advances in human–robot interaction. In: Springer tracts in advanced robotics, vol 14. Springer, BerlinGoogle Scholar
  43. Rammstedt B, Kemper CJ, Klein MC, Beierlein C, Kovaleva A (2013) A short scale for assessing the big five dimensions of personality. Methoden Daten Analysen 7(2):233–249. doi: 10.12758/mda.2013.013 Google Scholar
  44. Reeves B, Nass C (1998) The media equation: how people treat computers, television, and new media like real people and places, 1. pbk. ed. CSLI Publications, Stanford CalifGoogle Scholar
  45. Regenbogen C, Schneider DA, Gur RE, Schneider F, Habel U, Kellermann T (2012) Multimodal human communication–targeting facial expressions, speech content and prosody. Neuroimage 60(4):2346–2356. doi: 10.1016/j.neuroimage.2012.02.043 CrossRefGoogle Scholar
  46. Reich N, Eyssel F (2013) Attitudes towards service robots in domestic environments: the role of personality characteristics, individual interests, and demographic variables. Paladyn J Behav Robot 4(2):123–130. doi: 10.2478/pjbr-2013-0014 Google Scholar
  47. Riordan MA, Kreuz RJ (2010) Emotion encoding and interpretation in computer-mediated communication: reasons for use. Comput Hum Behav 26(6):1667–1673. doi: 10.1016/j.chb.2010.06.015 CrossRefGoogle Scholar
  48. Rozin P, Fallon AE (1987) A perspective on disgust. Psychol Rev 94(1):23–41CrossRefGoogle Scholar
  49. Sagiroglu S, Sinanc D (2013) Big data: a review, pp 42–47. doi:  10.1109/CTS.2013.6567202
  50. Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K (2002) The intelligent ASIMO: system overview and integration. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. IEEE, New YorkGoogle Scholar
  51. Salem M, Lakatos G, Amirabdollahian F, Dautenhahn K (2015) Would you trust a (faulty) robot?: effects of error, task type and personality on human-robot cooperation and trust. In: Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction. ACM, pp 141–148Google Scholar
  52. Saygin AP, Chaminade T, Ishiguro H, Driver J, Frith C (2012) The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Soc Cogn Affect Neurosci 7(4):413–422. doi: 10.1093/scan/nsr025 CrossRefGoogle Scholar
  53. Schaefer KE (2013) The perception and measurement of human–robot trust. Dissertation, University of Central Florida Orlando, FloridaGoogle Scholar
  54. Schaefer KE, Chen JYC, Szalma JL, Hancock PA (2016) A meta-analysis of factors influencing the development of trust in automation: implications for understanding autonomy in future systems. Hum Factors 58(3):377–400. doi: 10.1177/0018720816634228 CrossRefGoogle Scholar
  55. Schlette C (2013) Anthropomorphe Multi-Agentensysteme: Simulation, Analyse und Steuerung. Springer Fachmedien Wiesbaden, WiesbadenCrossRefGoogle Scholar
  56. Schroeder RG, Linderman K, Liedtke C, Choo AS (2008) Six sigma: definition and underlying theory. J Oper Manag 26(4):536–554. doi: 10.1016/j.jom.2007.06.007 CrossRefGoogle Scholar
  57. Schwab K (2017) The fourth industrial revolution, First U.S. edition. Crown Business, New YorkGoogle Scholar
  58. Siegert I, Hartmann K, Philippou-Hubner D, Wendemuth A (2013) Human Behaviour in HCI: complex emotion detection through sparse speech features. In: Salah AA, Hung H, Aran O, Gunes H (eds) HBU 2013, LNCS, vol 8212. Springer, Heidelberg, pp 244–255Google Scholar
  59. Sproull L, Subramani M, Kiesler S, Walker J, Waters K (1996) When the interface is a face. Hum Comp Interact 11(2):97–124. doi: 10.1207/s15327051hci1102_1 CrossRefGoogle Scholar
  60. Srite M, Karahanna E (2006) The role of espoused national cultural values in technology acceptance. MIS Q 3(30):679–704CrossRefGoogle Scholar
  61. Sugarman S (1989) Piaget’s construction of the child’s reality, [2.] repr. Cambridge University Press, CambridgeGoogle Scholar
  62. van Houten F, Kimura F (2000) The virtual maintenance system: a computer-based support tool for robust design, product monitoring, fault diagnosis and maintenance planning. CIRP Ann Manuf Technol 49(1):91–94. doi: 10.1016/S0007-8506(07)62903-5 CrossRefGoogle Scholar
  63. Weber J (2008) Human–robot interaction. In: Kelsey S (ed) Handbook of research on computer mediated communication. Information Science Reference, Hershey, pp 855–867CrossRefGoogle Scholar
  64. Wilkinson J (2015) The strong robot with the gentle touch. Accessed 14 Aug 2017
  65. Wirth W, Schramm H, Böcking S, Gysbers A, Hartmann T, Klimmt C, Vorderer P (2008) Entwicklung und Validierung eines Fragebogens zur Entstehung von räumlichem Präsenzerleben. In: Matthes J (ed) Die Brücke zwischen Theorie und Empirie: Operationalisierung, Messung und Validierung in der Kommunikationswissenschaft. von Halem, Köln, pp 70–95Google Scholar
  66. Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044. doi: 10.1109/JPROC.2010.2044470 CrossRefGoogle Scholar
  67. Zikopoulos P (2012) Understanding big data: Analytics for enterprise class Hadoop and streaming data; [learn how IBM hardens Hadoop for enterprise-class scalability and reliability, gain insight into IBM’s unique in-motion and at-rest Big Data analytics platform, learn tips and tricks for Big Data use cases and solutions, get a quick Hadoop primer]. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Anja Richert
    • 1
    Email author
  • Sarah Müller
    • 1
  • Stefan Schröder
    • 1
  • Sabina Jeschke
    • 1
  1. 1.Cybernetics Lab IMA/ZLW & IfURWTH Aachen UniversityAachenGermany

Personalised recommendations