Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of Cryptology
  3. Article

Secure Integration of Asymmetric and Symmetric Encryption Schemes

  • Published: 02 December 2011
  • Volume 26, pages 80–101, (2013)
  • Cite this article
Download PDF
Journal of Cryptology Aims and scope Submit manuscript
Secure Integration of Asymmetric and Symmetric Encryption Schemes
Download PDF
  • Eiichiro Fujisaki1 &
  • Tatsuaki Okamoto1 
  • 5654 Accesses

  • 199 Citations

  • 12 Altmetric

  • Explore all metrics

Abstract

This paper presents a generic conversion from weak asymmetric and symmetric encryption schemes to an asymmetric encryption scheme that is chosen-ciphertext secure in the random oracle model. Our conversion is the first generic transformation from an arbitrary one-way asymmetric encryption scheme to a chosen-ciphertext secure asymmetric encryption scheme in the random oracle model.

Article PDF

Download to read the full article text

Similar content being viewed by others

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks

Chapter © 2018

Non-Interactive Key Exchange

Chapter © 2013

On the Semantic Security of Functional Encryption Schemes

Chapter © 2013
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Abdalla, M. Bellare, P. Rogaway, DHIES: An encryption scheme based on the Diffie–Hellman problem, in IEEE P1363a, September 2001 (2001). ANSI X9.63EC, and SECG

    Google Scholar 

  2. M. Abdalla, M. Bellare, P. Rogaway, DHAES: An encryption scheme based on the Diffie–Hellman problem. Submission to IEEE P1363, November 1998. http://grouper.ieee.org/groups/1363/StudyGroup/

  3. M. Abe, R. Gennaro, K. Kurosawa, Tag-KEM/DEM: A new framework for hybrid encryption. J. Cryptol. 21(1), 97–130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bellare, A. Palacio, Towards plaintext-aware public-key encryption without random oracles, in Advances in Cryptology—Asiacrypt 2004, ed. by P.J. Lee. Lecture Notes in Computer Science, vol. 3329 (Springer, Berlin, 2004), pp. 48–62

    Chapter  Google Scholar 

  5. M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in First ACM Conference on Computer and Communication Security (ACM, New York, 1993), pp. 62–73

    Chapter  Google Scholar 

  6. M. Bellare, P. Rogaway, Optimal asymmetric encryption, in Advances in Cryptology—EUROCRYPT’94, ed. by A.D. Santis. Lecture Notes in Computer Science, vol. 950 (Springer, Berlin, 1995), pp. 92–111

    Google Scholar 

  7. M. Bellare, A. Desai, D. Pointcheval, P. Rogaway, Relations among notions of security for public-key encryption schemes, in Advances in Cryptology—CRYPTO’98, ed. by H. Krawczyk. Lecture Notes in Computer Science, vol. 1462 (Springer, Berlin, 1998), pp. 26–45

    Google Scholar 

  8. D. Boneh, R. Canetti, S. Halevi, J. Katz, Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

    Article  MathSciNet  Google Scholar 

  9. R. Canetti, S. Halevi, J. Katz, Chosen-ciphertext security from identity based encryption, in Advances in Cryptology—EUROCRYPT 2004, ed. by C. Cachin, J. Camenisch. Lecture Notes in Computer Science, vol. 3027 (Springer, Berlin, 2004), pp. 207–222

    Chapter  Google Scholar 

  10. D. Cash, E. Kiltz, V. Shoup, The twin Diffie–Hellman problem and applications, in EUROCRYPT, ed. by N.P. Smart. Lecture Notes in Computer Science, vol. 4965 (Springer, Berlin, 2008), pp. 127–145

    Google Scholar 

  11. R. Cramer, V. Shoup, A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack, in Advances in Cryptology—CRYPTO’98, ed. by H. Krawczyk. Lecture Notes in Computer Science, vol. 1462 (Springer, Berlin, 1998), pp. 13–25

    Google Scholar 

  12. R. Cramer, V. Shoup, Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption, in Advances in Cryptology—EUROCRYPT’02. Lecture Notes in Computer Science (Springer, Berlin, 2002), pp. 45–64

    Google Scholar 

  13. R. Cramer, V. Shoup, Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2004). Early version in CRYPTO’98

    Article  MathSciNet  Google Scholar 

  14. R. Cramer, D. Hofheinz, E. Kiltz, A twist on the Naor–Yung paradigm and its application to efficient cca-secure encryption from hard search problems, in Theory of Cryptography—TCC 2010. Lecture Notes in Computer Science, vol. 5978 (Springer, Berlin, 2010), pp. 146–164

    Chapter  Google Scholar 

  15. I. Damgård, Towards practical public key systems secure against chosen ciphertext attacks, in Advances in Cryptology—CRYPTO’91, ed. by J. Feigenbaum. Lecture Notes in Computer Science, vol. 576 (Springer, Berlin, 1992), pp. 445–456

    Google Scholar 

  16. D. Dolev, C. Dwork, M. Naor, Non-malleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000) (Presented in STOC’91)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Frankel, M. Yung, Cryptoanalysis of the immunized LL public key systems, in Advances in Cryptology—CRYPTO’95, ed. by D. Coppersmith. Lecture Notes in Computer Science, vol. 963 (Springer, Berlin, 1995), pp. 287–296

    Google Scholar 

  18. E. Fujisaki, T. Okamoto, Secure integration of asymmetric and symmetric encryption schemes, in Advances in Cryptology—CRYPTO’99, ed. by M. Wiener. Lecture Notes in Computer Science, vol. 1666 (Springer, Berlin, 1999), pp. 537–554

    Google Scholar 

  19. E. Fujisaki, T. Okamoto, How to enhance the security of public-key encryption at minimum cost. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E83-A(1), 24–32 (2000). Early Version in PKC’99

    Google Scholar 

  20. E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, RSA-OAEP is secure under the RSA assumption, in Advances in Cryptology—CRYPTO2001, ed. by J. Kilian. Lecture Notes in Computer Science, vol. 2139 (Springer, Berlin, 2001), pp. 260–274

    Google Scholar 

  21. D. Galindo, S. Martin, P. Morillo, J. Villar, Fujisaki-Okamoto IND-CCA hybrid encryption revisited. Technical report, IACR, May 2003. http://eprint.iacr.org/2003/107

  22. O. Goldreich, A uniform-complexity treatment of encryption and zero-knowledge. J. Cryptol. 6(1), 21–53 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. O. Goldreich, L. Levin, A hard-core predicate for all one-way functions, in Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC’89) (1989), pp. 25–32

    Google Scholar 

  24. S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Hofheinz, E. Kiltz, Secure hybrid encryption from weakened key encapsulation, in CRYPTO, ed. by A. Menezes. Lecture Notes in Computer Science, vol. 4622 (Springer, Berlin, 2007), pp. 553–571

    Google Scholar 

  26. D. Hofheinz, E. Kiltz, Practical chosen ciphertext secure encryption from factoring, in EUROCRYPT, ed. by A. Joux. Lecture Notes in Computer Science, vol. 5479 (Springer, Berlin, 2009), pp. 313–332

    Google Scholar 

  27. M. Joye, J. Quisquater, M. Yung, On the power of misbehaving adversaries and security analysis of the original epoc, in CT—RSA’2001. Lecture Notes in Computer Science, vol. 2020 (Springer, Berlin, 2001), pp. 208–222

    Google Scholar 

  28. J. Kilian, P. Rogaway, How to protect DES against exhaustive key search (an analysis of DESX). J. Cryptol. 14(1), 17–35 (2001). Early version in CRYPTO’96

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Kiltz, K. Pietrzak, M. Stam, M. Yung, A new randomness extraction paradigm for hybrid encryption, in Advances in Cryptology—EUROCRYPT 2009, ed. by A. Joux. Lecture Notes in Computer Science, vol. 5479 (Springer, Berlin, 2009), pp. 590–609

    Chapter  Google Scholar 

  30. K. Kurosawa, Y. Desmedt, A new paradigm of hybrid encryption scheme, in Advances in Cryptology—CRYPTO 2004, ed. by M. Franklin. Lecture Notes in Computer Science, vol. 3152 (Springer, Berlin, 2004), pp. 426–442

    Chapter  Google Scholar 

  31. C. Lim, P. Lee, Another method for attaining security against adaptively chosen ciphertext attacks, in Advances in Cryptology—CRYPTO’93, ed. by D. Stinson. Lecture Notes in Computer Science, vol. 773 (Springer, Berlin, 1993)

    Google Scholar 

  32. Y. Lindell, A simpler construction of cca2-secure public-key encryption under general assumptions, in Advances in Cryptology—EUROCRYPT’03, ed. by E. Biham. Lecture Notes in Computer Science, vol. 2656 (Springer, Berlin, 2003), pp. 241–254

    Google Scholar 

  33. M. Naor, M. Yung, Public-key cryptosystems provably secure against chosen ciphertext attacks, in Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC’90) (1990), pp. 427–437

    Google Scholar 

  34. T. Okamoto, D. Pointcheval, REACT: Rapid enhanced-security asymmetric cryptosystem transform, in CT—RSA’2001. Lecture Notes in Computer Science, vol. 2020 (Springer, Berlin, 2001), pp. 159–175

    Google Scholar 

  35. T. Okamoto, S. Uchiyama, A new public-key cryptosystem as secure as factoring, in Advances in Cryptology—EUROCRYPT’98, ed. by K. Nyberg. Lecture Notes in Computer Science, vol. 1403 (Springer, Berlin, 1998), pp. 308–318

    Google Scholar 

  36. T. Okamoto, S. Uchiyama, E. Fujisaki, EPOC: Efficient probabilistic public-key encryption. Submission to IEEE P1363. http://info.isl.ntt.co.jp/epoc

  37. C. Peikert, B. Waters, Lossy trapdoor functions and their applications, in Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC’08) (2008)

    Google Scholar 

  38. D.H. Phan, D. Pointcheval, OAEP 3-round: A generic and secure asymmetric encryption padding, in Advances in Cryptology—Asiacrypt 2004, ed. by P.J. Lee. Lecture Notes in Computer Science, vol. 3329 (Springer, Berlin, 2004), pp. 63–78

    Chapter  Google Scholar 

  39. D. Pointcheval, Chosen-ciphertext security for any one-way cryptosystem, in 3rd International Workshop on Practice and Theory in Public Key Cryptography—PKC’00, ed. by H. Imai, Y. Zheng. Lecture Notes in Computer Science, vol. 1751 (Springer, Berlin, 2000), pp. 129–146

    Google Scholar 

  40. C. Rackoff, D. Simon, Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack, in Advances in Cryptology—CRYPTO’91, ed. by J. Feigenbaum. Lecture Notes in Computer Science, vol. 576 (Springer, Berlin, 1992), pp. 433–444

    Google Scholar 

  41. A. Rosen, G. Segev, Chosen-ciphertext security via correlated products, in Theory of Cryptography—TCC 2009, ed. by O. Reingold. Lecture Notes in Computer Science, vol. 5444 (Springer, Berlin, 2009), pp. 419–436

    Chapter  Google Scholar 

  42. A. Sahai, Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security, in Proceedings of the 40th IEEE Annual Symposium on Foundations of Computer Science (FOCS’99) (1999), pp. 543–553

    Google Scholar 

  43. K. Sakurai, T. Takagi, A reject timing attack on an ind-cca2 public-key cryptosystem, in ICISC’02. Lecture Notes in Computer Science, vol. 2587 (Springer, Berlin, 2001), pp. 359–373

    Google Scholar 

  44. V. Shoup, OAEP Reconsidered, in Advances in Cryptology—CRYPTO2001, ed. by J. Kilian. Lecture Notes in Computer Science, vol. 2139 (Springer, Berlin, 2001), pp. 239–259

    Google Scholar 

  45. V. Shoup, A proposal for an ISO standard for public key encryption. Technical report, Cryptology ePrint Archive, Report 2001/112, December 2001

  46. H. Wee, Efficient chosen-ciphertext security via extractable hash proofs, in CRYPTO, ed. by T. Rabin. Lecture Notes in Computer Science, vol. 6223 (Springer, Berlin, 2010), pp. 314–332

    Google Scholar 

  47. Y. Zheng, J. Seberry, Immunizing public key cryptosystems against chosen ciphertext attacks. J. Sel. Areas Commun. 11(5) (1993)

Download references

Author information

Authors and Affiliations

  1. NTT Laboratories, 3-9-11 Midori-cho Musashino-shi, Tokyo, 180-8585, Japan

    Eiichiro Fujisaki & Tatsuaki Okamoto

Authors
  1. Eiichiro Fujisaki
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tatsuaki Okamoto
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Eiichiro Fujisaki.

Additional information

Communicated by Dan Boneh

This is the full version of the paper [18] by fixing bugs and providing a clean, formal proof associated with a better security bound.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujisaki, E., Okamoto, T. Secure Integration of Asymmetric and Symmetric Encryption Schemes. J Cryptol 26, 80–101 (2013). https://doi.org/10.1007/s00145-011-9114-1

Download citation

  • Received: 20 April 2005

  • Published: 02 December 2011

  • Issue Date: January 2013

  • DOI: https://doi.org/10.1007/s00145-011-9114-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Asymmetric and symmetric (or public-key and private-key) encryptions
  • Generic conversion
  • Indistinguishability against chosen ciphertext attacks (IND-CCA)
  • Random oracle model
  • Security proof
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

103.230.141.187

Not affiliated

Springer Nature

© 2024 Springer Nature