Skip to main content

Advertisement

Log in

Biomechanik und Untersuchung des patellofemoralen Gelenks

Biomechanics and examination of the patellofemoral joint

  • Leitthema
  • Published:
Arthroskopie Aims and scope

Zusammenfassung

Die physiologische Funktion des Patellofemoralgelenks (PFG) wird durch die Interaktion verschiedener anatomischer und biomechanischer Faktoren bedingt. Viele patellofemorale Krankheitsbilder entstehen auf der Grundlage von Dysbalancen, die auf Abweichungen dieser Faktoren zurückzuführen sind und die komplexe Kinematik des PFG in relevantem Ausmaß beeinträchtigen. Die resultierenden Patholgien lassen sich drei große Symptomkomplexe einteilen: vorderer Knieschmerz, Arthrose und Instabilität. Die erfolgreiche Behandlung dieser Krankheitsbilder setzt eine genaue Kenntnis sowie eine gründliche klinische Analyse zugrundeliegender Pathologien voraus. Im Folgenden sollen die biomechanischen Grundlagen aktiver, passiver und statischer Stabilisatoren des PFG sowie deren Einfluss auf die patellofemorale Kinematik erörtert und dargestellt werden. Zudem soll ein Überblick klinischer Untersuchungsmethoden zur Diagnose einzelner Pathologien gegeben werden.

Abstract

The complex physiological function of the patellofemoral joint depends on the dynamic interaction of various anatomical and biomechanical factors. Many patellofemoral disease symptoms are the result of an imbalance due to deviations of these factors, which impair the complex patellofemoral kinematics to a relevant extent. The resulting pathological conditions can be classified into three major symptom complexes: anterior knee pain, osteoarthritis and instability. An exact understanding of potential underlying pathological conditions and a thorough clinical analysis are mandatory and absolute prerequisites for successful treatment. The aim of this article is to present and discuss the biomechanical principles of static, passive and active stabilizers of the patellofemoral joint as well as their influence on the patellofemoral kinematics. In addition, it provides an overview of the clinical examination methods for the diagnosis of the individual pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Amis AA (2007) Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc Rev 15:48–56

    Article  Google Scholar 

  2. Amis AA, Senavongse W, Bull AM (2006) Patellofemoral kinematics during knee flexion-extension: an in vitro study. J Orthop Res 24:2201–2211

    Article  Google Scholar 

  3. Arendt EA, Askenberger M, Agel J et al (2018) Risk of redislocation after primary patellar dislocation: a clinical prediction model based on magnetic resonance imaging variables. Am J Sports Med 46:3385–3390

    Article  Google Scholar 

  4. Balcarek P, Oberthur S, Hopfensitz S et al (2014) Which patellae are likely to redislocate? Knee Surg Sports Traumatol Arthrosc 22:2308–2314

    Article  Google Scholar 

  5. Borotikar BS, Sheehan FT (2013) In vivo patellofemoral contact mechanics during active extension using a novel dynamic MRI-based methodology. Osteoarthritis Cartilage 21:1886–1894

    Article  CAS  Google Scholar 

  6. Clark D, Stevens JM, Tortonese D et al (2019) Mapping the contact area of the patellofemoral joint: the relationship between stability and joint congruence. Bone Joint J 101-B:552–558

    Article  CAS  Google Scholar 

  7. Desio SM, Burks RT, Bachus KN (1998) Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med 26:59–65

    Article  CAS  Google Scholar 

  8. Dickschas J, Ferner F, Lutter C et al (2018) Patellofemoral dysbalance and genua valga: outcome after femoral varisation osteotomies. Arch Orthop Trauma Surg 138:19–25

    Article  Google Scholar 

  9. Dickschas J, Harrer J, Bayer T et al (2016) Correlation of the tibial tuberosity-trochlear groove distance with the Q‑angle. Knee Surg Sports Traumatol Arthrosc 24:915–920

    Article  Google Scholar 

  10. Frings J, Krause M, Akoto R et al (2019) Clinical results after combined distal femoral osteotomy in patients with patellar maltracking and recurrent dislocations. J Knee Surg 32:924–933

    Article  Google Scholar 

  11. Frings J, Krause M, Akoto R et al (2018) Combined distal femoral osteotomy (DFO) in genu valgum leads to reliable patellar stabilization and an improvement in knee function. Knee Surg Sports Traumatol Arthrosc 26:3572–3581

    Article  Google Scholar 

  12. Frings J, Krause M, Wohlmuth P et al (2018) Influence of patient-related factors on clinical outcome of tibial tubercle transfer combined with medial patellofemoral ligament reconstruction. Knee 25:1157–1164

    Article  Google Scholar 

  13. Frosch KH, Schmeling A (2016) A new classification system of patellar instability and patellar maltracking. Archives of orthopaedic and traumatic surgery. Arch Orthop Trauma Surg 136:485–497

    Article  Google Scholar 

  14. Hinckel BB, Gobbi RG, Kaleka CC et al (2018) Medial patellotibial ligament and medial patellomeniscal ligament: anatomy, imaging, biomechanics, and clinical review. Knee Surg Sports Traumatol Arthrosc 26:685–696

    Article  Google Scholar 

  15. Kaiser P, Schmoelz W, Schoettle P et al (2017) Increased internal femoral torsion can be regarded as a risk factor for patellar instability—A biomechanical study. Clin Biomech 47:103–109

    Article  Google Scholar 

  16. Kita K, Tanaka Y, Toritsuka Y et al (2015) Factors affecting the outcomes of double-bundle medial patellofemoral ligament reconstruction for recurrent patellar dislocations evaluated by multivariate analysis. Am J Sports Med 43:2988–2996

    Article  Google Scholar 

  17. Loeb AE, Tanaka MJ (2018) The medial patellofemoral complex. Curr Rev Musculoskelet Med 11:201–208

    Article  Google Scholar 

  18. Merican AM, Amis AA (2008) Anatomy of the lateral retinaculum of the knee. J Bone Joint Surg Br 90:527–534

    Article  CAS  Google Scholar 

  19. Pagenstert GI, Bachmann M (2008) Clinical examination for patellofemoral problems. Orthopäde 37:890–895, 897–903

    Article  CAS  Google Scholar 

  20. Russ SD, Tompkins M, Nuckley D et al (2015) Biomechanical comparison of patellar fixation techniques in medial patellofemoral ligament reconstruction. Am J Sports Med 43:195–199

    Article  Google Scholar 

  21. Sakai N, Luo ZP, Rand JA et al (2000) The influence of weakness in the vastus medialis oblique muscle on the patellofemoral joint: an in vitro biomechanical study. Clin Biomech 15:335–339

    Article  CAS  Google Scholar 

  22. Schon SN, Afifi FK, Rasch H et al (2014) Assessment of in vivo loading history of the patellofemoral joint: a study combining patellar position, tilt, alignment and bone SPECT/CT. Knee Surg Sports Traumatol Arthrosc 22:3039–3046

    Article  Google Scholar 

  23. Seitlinger G, Scheurecker G, Hogler R et al (2012) Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 40:1119–1125

    Article  Google Scholar 

  24. Senavongse W, Amis AA (2005) The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability: a biomechanical study in vitro. J Bone Joint Surg Br 87:577–582

    Article  CAS  Google Scholar 

  25. Stefanik JJ, Roemer FW, Zumwalt AC et al (2012) Association between measures of trochlear morphology and structural features of patellofemoral joint osteoarthritis on MRI: the MOST study. J Orthop Res 30:1–8

    Article  Google Scholar 

  26. Stephen JM, Kader D, Lumpaopong P et al (2013) Sectioning the medial patellofemoral ligament alters patellofemoral joint kinematics and contact mechanics. J Orthop Res 31:1423–1429

    Article  Google Scholar 

  27. Stephen JM, Lumpaopong P, Dodds AL et al (2015) The effect of tibial tuberosity medialization and lateralization on patellofemoral joint kinematics, contact mechanics, and stability. Am J Sports Med 43:186–194

    Article  Google Scholar 

  28. Tanaka MJ (2016) Variability in the patellar attachment of the medial Patellofemoral ligament. Arthroscopy 32:1667–1670

    Article  Google Scholar 

  29. Van Haver A, De Roo K, De Beule M et al (2015) The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med 43:1354–1361

    Article  Google Scholar 

  30. Von Knoch F, Bohm T, Burgi ML et al (2006) Trochleaplasty for recurrent patellar dislocation in association with trochlear dysplasia. A 4‑ to 14-year follow-up study. J Bone Joint Surg Br 88:1331–1335

    Article  Google Scholar 

  31. Warren LF, Marshall JL (1979) The supporting structures and layers on the medial side of the knee: an anatomical analysis. J Bone Joint Surg Am 61:56–62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Seitlinger.

Ethics declarations

Interessenkonflikt

J. Frings und G. Seitlinger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frings, J., Seitlinger, G. Biomechanik und Untersuchung des patellofemoralen Gelenks. Arthroskopie 33, 404–411 (2020). https://doi.org/10.1007/s00142-020-00388-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00142-020-00388-w

Schlüsselwörter

Keywords

Navigation