Skip to main content

Advertisement

Log in

Gonarthrose

Gibt es die regionale Arthrose am Kniegelenk?

Osteoarthritis of the knee joint

What is the evidence for a topographical involvement of osteoarthritis of the knee joint?

  • Leitthema
  • Published:
Arthroskopie Aims and scope

Zusammenfassung

Hintergrund

Gelenkerhaltende Eingriffe bei Gonarthrose beschränken sich zumeist auf arthrotisch veränderte regionale Anteile des Kniegelenks.

Ziel der Arbeit

Dieser Artikel befasst sich mit topographischen Aspekten der Arthroseentstehung im Kniegelenk. Schwerpunkte sind topographische Zusammenhänge der normalen und arthrotischen osteochondralen Einheit des Kniegelenks, wie beispielsweise zwischen von den Menisken bedeckten und unbedeckten Arealen.

Material und Methoden

Es wurde eine selektive Literaturrecherche durchgeführt und eigene Forschungsergebnisse implementiert.

Ergebnisse

Neue Erkenntnisse aus translationalen und klinischen Studien zu allgemeinen und speziellen Arthrosemustern, wie z. B. ausgehend von fokalen Knorpeldefekten, nach (partieller) Meniskusresektion, nach Rupturen des vorderen Kreuzbands (VKB) sowie bei patellofemoraler Instabilität, werden diskutiert.

Abstract

Background

Joint-preserving reconstructive interventions for knee osteoarthritis (OA) are chiefly restricted to osteoarthritic regional parts of the knee joint.

Objective

This article elaborates on topographical aspects of the development of OA in the knee joint. The main points of interest are topographical relationships between the normal and arthritic osteochondral unit of the knee joint, such as between areas covered and not covered by the meniscus.

Material and methods

A selective literature review was carried out with implementation of own research findings.

Results

New insights from translational and clinical studies on general and special patterns of OA, such as originating from focal cartilage defects, following (partial) meniscectomy, after rupture of the anterior cruciate ligament (ACL) and in the case of patellofemoral instability, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ambra LF, Hinckel BB, Arendt EA et al (2019) Anatomic risk factors for focal cartilage lesions in the patella and trochlea: a case-control study. Am J Sports Med 47:2444–2453

    PubMed  Google Scholar 

  2. Antony B, Driban JB, Price LL et al (2016) The relationship between meniscal pathology and osteoarthritis depends on the type of meniscal damage visible on magnetic resonance images: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 25(1):76–84

    PubMed  PubMed Central  Google Scholar 

  3. Arner JW, Irvine JN, Zheng L et al (2016) The effects of anterior cruciate ligament deficiency on the meniscus and articular cartilage: a novel dynamic in vitro pilot study. Orthop J Sports Med 4:2325967116639895

    PubMed  PubMed Central  Google Scholar 

  4. Bae WC, Payanal MM, Chen AC et al (2010) Topographic patterns of cartilage lesions in knee osteoarthritis. Cartilage 1:10–19

    PubMed  PubMed Central  Google Scholar 

  5. Bloecker K, Wirth W, Guermazi A et al (2015) Relationship between medial meniscal extrusion and cartilage loss in specific femorotibial subregions: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken) 67:1545–1552

    CAS  PubMed Central  Google Scholar 

  6. Charrois O, Ayral X, Beaufils P (1998) Rapid chondrolysis after arthroscopic external meniscectomy. Apropos of 4 cases. Rev Chir Orthop Reparatrice Appar Mot 84:88–92

    CAS  PubMed  Google Scholar 

  7. Chatain F, Robinson AH, Adeleine P et al (2001) The natural history of the knee following arthroscopic medial meniscectomy. Knee Surg Sports Traumatol Arthrosc 9:15–18

    CAS  PubMed  Google Scholar 

  8. Chen HN, Yang K, Dong QR et al (2014) Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging. J Orthop Surg Res 9:65

    PubMed  PubMed Central  Google Scholar 

  9. Chen MI, Branch TP, Hutton WC (1996) Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy 12:174–181

    CAS  PubMed  Google Scholar 

  10. Cicuttini FM, Wluka AE, Wang Y et al (2002) Compartment differences in knee cartilage volume in healthy adults. J Rheumatol 29:554–556

    PubMed  Google Scholar 

  11. Crema MD, Guermazi A, Li L et al (2010) The association of prevalent medial meniscal pathology with cartilage loss in the medial tibiofemoral compartment over a 2-year period. Osteoarthritis Cartilage 18:336–343

    CAS  PubMed  Google Scholar 

  12. Duncan R, Peat G, Thomas E et al (2009) Does isolated patellofemoral osteoarthritis matter? Osteoarthritis Cartilage 17:1151–1155

    CAS  PubMed  Google Scholar 

  13. Duncan RC, Hay EM, Saklatvala J et al (2006) Prevalence of radiographic osteoarthritis—it all depends on your point of view. Rheumatology (Oxford) 45:757–760

    CAS  Google Scholar 

  14. Eckstein F, Buck R, Wirth W (2017) Location-independent analysis of structural progression of osteoarthritis – taking it all apart, and putting the puzzle back together makes the difference. Semin Arthritis Rheum 46:404–410

    PubMed  Google Scholar 

  15. Feeley BT, Lau BC (2018) Biomechanics and clinical outcomes of partial meniscectomy. J Am Acad Orthop Surg 26:853–863

    PubMed  Google Scholar 

  16. Florea C, Malo MK, Rautiainen J et al (2015) Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate ligament transection. Osteoarthritis Cartilage 23:414–422

    CAS  PubMed  Google Scholar 

  17. Heijink A, Gomoll AH, Madry H et al (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20:423–435

    PubMed  Google Scholar 

  18. Hochreiter B, Hess S, Moser L et al (2020) Healthy knees have a highly variable patellofemoral alignment: a systematic review. Knee Surg Sports Traumatol Arthrosc 28:398–406

    PubMed  Google Scholar 

  19. Ishida K, Kuroda R, Sakai H et al (2006) Rapid chondrolysis after arthroscopic partial lateral meniscectomy in athletes: a case report. Knee Surg Sports Traumatol Arthrosc 14:1266–1269

    PubMed  Google Scholar 

  20. Johnson VL, Guermazi A, Roemer FW et al (2017) Comparison in knee osteoarthritis joint damage patterns among individuals with an intact, complete and partial anterior cruciate ligament rupture. Int J Rheum Dis 20:1361–1371

    CAS  PubMed  Google Scholar 

  21. Kestila I, Folkesson E, Finnila MA et al (2019) Three-dimensional microstructure of human meniscus posterior horn in health and osteoarthritis. Osteoarthritis Cartilage 27:1790–1799

    CAS  PubMed  Google Scholar 

  22. Madry H, Ziegler R, Pape D et al (2014) Structural changes in the lateral tibiofemoral compartment after high tibial osteotomy. Orthopade 43:958–965

    CAS  PubMed  Google Scholar 

  23. Maletius W, Messner K (1996) The effect of partial meniscectomy on the long-term prognosis of knees with localized, severe chondral damage. A twelve- to fifteen-year followup. Am J Sports Med 24:258–262

    CAS  PubMed  Google Scholar 

  24. Mariani PP, Garofalo R, Margheritini F (2008) Chondrolysis after partial lateral meniscectomy in athletes. Knee Surg Sports Traumatol Arthrosc 16:574–580

    PubMed  Google Scholar 

  25. McAlindon TE, Snow S, Cooper C et al (1992) Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis 51:844–849

    CAS  PubMed  PubMed Central  Google Scholar 

  26. McKinley TO, English DK, Bay BK (2003) Trabecular bone strain changes resulting from partial and complete meniscectomy. Clin Orthop Relat Res 407:259–267

    Google Scholar 

  27. Mehl J, Feucht MJ, Bode G et al (2016) Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects. Knee Surg Sports Traumatol Arthrosc 24:838–846

    PubMed  Google Scholar 

  28. Moulton SG, Bhatia S, Civitarese DM et al (2016) Surgical techniques and outcomes of repairing meniscal radial tears: a systematic review. Arthroscopy 32:1919–1925

    PubMed  Google Scholar 

  29. Nishimori M, Deie M, Adachi N et al (2008) Articular cartilage injury of the posterior lateral tibial plateau associated with acute anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 16:270–274

    PubMed  Google Scholar 

  30. Olah T, Reinhard J, Gao L et al (2019) Topographic modeling of early human osteoarthritis in sheep. Sci Transl Med 11:eaax6775

    PubMed  Google Scholar 

  31. Paradowski PT, Lohmander LS, Englund M (2016) Osteoarthritis of the knee after meniscal resection: long term radiographic evaluation of disease progression. Osteoarthritis Cartilage 24:794–800

    CAS  PubMed  Google Scholar 

  32. Persson F, Turkiewicz A, Bergkvist D et al (2018) The risk of symptomatic knee osteoarthritis after arthroscopic meniscus repair vs partial meniscectomy vs the general population. Osteoarthritis Cartilage 26:195–201

    CAS  PubMed  Google Scholar 

  33. Rockborn P, Gillquist J (1995) Outcome of arthroscopic meniscectomy. A 13-year physical and radiographic follow-up of 43 patients under 23 years of age. Acta Orthop Scand 66:113–117

    CAS  PubMed  Google Scholar 

  34. Sanders TL, Pareek A, Obey MR et al (2017) High rate of osteoarthritis after osteochondritis dissecans fragment excision compared with surgical restoration at a mean 16-year follow-up. Am J Sports Med 45:1799–1805

    PubMed  Google Scholar 

  35. Schimmer RC, Brulhart KB, Duff C et al (1998) Arthroscopic partial meniscectomy: a 12-year follow-up and two-step evaluation of the long-term course. Arthroscopy 14:136–142

    CAS  PubMed  Google Scholar 

  36. Schinhan M, Gruber M, Vavken P et al (2012) Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J Orthop Res 30:214–220

    PubMed  Google Scholar 

  37. Servien E, Acquitter Y, Hulet C et al (2009) Lateral meniscus lesions on stable knee: a prospective multicenter study. Orthop Traumatol Surg Res 95:S60–S64

    CAS  PubMed  Google Scholar 

  38. Stefanik JJ, Guermazi A, Roemer FW et al (2016) Changes in patellofemoral and tibiofemoral joint cartilage damage and bone marrow lesions over 7 years: the multicenter osteoarthritis study. Osteoarthritis Cartilage 24:1160–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stefanik JJ, Niu J, Gross KD et al (2013) Using magnetic resonance imaging to determine the compartmental prevalence of knee joint structural damage. Osteoarthritis Cartilage 21:695–699

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stefanik JJ, Roemer FW, Zumwalt AC et al (2012) Association between measures of trochlear morphology and structural features of patellofemoral joint osteoarthritis on MRI: the MOST study. J Orthop Res 30:1–8

    PubMed  Google Scholar 

  41. Stefanik JJ, Zhu Y, Zumwalt AC et al (2010) Association between patella alta and the prevalence and worsening of structural features of patellofemoral joint osteoarthritis: the multicenter osteoarthritis study. Arthritis Care Res (Hoboken) 62:1258–1265

    CAS  Google Scholar 

  42. Stein T, Mehling AP, Welsch F et al (2010) Long-term outcome after arthroscopic meniscal repair versus arthroscopic partial meniscectomy for traumatic meniscal tears. Am J Sports Med 38:1542–1548

    PubMed  Google Scholar 

  43. Stein V, Li L, Lo G et al (2012) Pattern of joint damage in persons with knee osteoarthritis and concomitant ACL tears. Rheumatol Int 32:1197–1208

    Google Scholar 

  44. Sutter EG, Liu B, Utturkar GM et al (2019) Effects of anterior cruciate ligament deficiency on tibiofemoral cartilage thickness and strains in response to hopping. Am J Sports Med 47:96–103

    PubMed  Google Scholar 

  45. Ziegler R, Goebel L, Cucchiarini M et al (2014) Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part II: standard and overcorrection do not cause articular cartilage degeneration. Knee Surg Sports Traumatol Arthrosc 22:1666–1677

    PubMed  Google Scholar 

  46. Ziegler R, Goebel L, Seidel R et al (2015) Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part III: analysis of the microstructure of the subchondral bone and correlations with the articular cartilage and meniscus. Knee Surg Sports Traumatol Arthrosc 23:2704–2714

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Madry.

Ethics declarations

Interessenkonflikt

H. Madry gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madry, H. Gonarthrose. Arthroskopie 33, 222–227 (2020). https://doi.org/10.1007/s00142-020-00362-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00142-020-00362-6

Schlüsselwörter

Keywords

Navigation